三角形外心的性质
三角形外接圆的圆心称为三角形的外心。外心也是三角形三边的中垂线的交点
性质1
设O为
△
A
B
C
△ABC
△ABC所在平面内的一点,则
O
O
O为
△
A
B
C
△ABC
△ABC的外心的充要条件是下列条件之一
1.1
O
A
=
O
B
=
O
C
OA=OB=OC
OA=OB=OC
充分性证明:
以 O O O为圆心, O A OA OA为半径作圆,则该圆过 A , B , C A,B,C A,B,C
因此 圆 O 圆O 圆O为 △ A B C △ABC △ABC的外接圆
所以 O O O是 △ A B C △ABC △ABC的外心
必要性证明:
△ A B C △ABC △ABC的外接圆圆心为 O O O,而 A , B , C A,B,C A,B,C在圆上,所以 O A = O B = O C OA=OB=OC OA=OB=OC
1.2
∠
B
O
C
=
2
∠
A
,
∠
C
O
A
=
2
∠
B
,
∠
A
O
B
=
2
∠
C
∠BOC=2∠A,∠COA=2∠B,∠AOB=2∠C
∠BOC=2∠A,∠COA=2∠B,∠AOB=2∠C
1.3
O
B
=
O
C
,
∠
B
O
C
=
2
∠
A
OB=OC,∠BOC=2∠A
OB=OC,∠BOC=2∠A
充分性证明:
以 O O O为圆心, O B OB OB为半径作圆,则该圆过 B , C B,C B,C
根据圆周角定理逆定理,点 A A A也在圆 O O O上
故圆 O O O是 △ A B C △ABC △ABC的外接圆, O O O为外心
必要性证明:
因为圆 O O O为 △ A B C △ABC △ABC的外接圆,所以 O B = O C OB=OC OB=OC
根据圆周角定理: ∠ B O C = 2 ∠ A ∠BOC=2∠A ∠BOC=2∠A
性质2
三角形外心到三边的有向距离(外心在边的形内一侧距离为正,形外一侧为负)之和等于其外接圆半径与内切圆半径的和
证明:
我们发现 d A = R c o s A d_A=RcosA dA=RcosA
则即证 R ( c o s A + c o s B + c o s C ) = ( R + r ) R(cosA+cosB+cosC)=(R+r) R(cosA+cosB+cosC)=(R+r)
⟺ R ( c o s A + c o s B + c o s C ) = R + 2 R ⋅ s i n A s i n B s i n C s i n A + s i n B + s i n C \iff R(cosA+cosB+cosC)=R+2R·\frac{sinAsinBsinC}{sinA+sinB+sinC} ⟺R(cosA+cosB+cosC)=R+2R⋅sinA+sinB+sinCsinAsinBsinC
⟺ ( c o s A + c o s B + c o s C − 1 ) ( s i n A + s i n B + s i n C ) = 2 s i n A s i n B s i n C \iff (cosA+cosB+cosC-1)(sinA+sinB+sinC)=2sinAsinBsinC ⟺(cosA+cosB+cosC−1)(sinA+sinB+sinC)=2sinAsinBsinC
由三角恒等式: s i n A + s i n B + s i n C = 4 c o s A 2 c o s B 2 c o s C 2 sinA+sinB+sinC=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2} sinA+sinB+sinC=4cos2Acos2Bcos2C
和 c o s A + c o s B + c o s C = 1 + 4 s i n A 2 s i n B 2 s i n C 2 cosA+cosB+cosC=1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2} cosA+cosB+cosC=1+4sin2Asin2Bsin2C相乘即证
性质3
过
△
A
B
C
△ABC
△ABC的外心
O
O
O任作一条直线与
A
B
,
A
C
AB,AC
AB,AC所在的直线分别相交于
P
,
Q
P,Q
P,Q,则
A
B
A
P
s
i
n
2
B
+
A
C
A
Q
s
i
n
2
C
=
s
i
n
2
A
+
s
i
n
2
B
+
s
i
n
2
C
\frac{AB}{AP}sin2B+\frac{AC}{AQ}sin2C=sin2A+sin2B+sin2C
APABsin2B+AQACsin2C=sin2A+sin2B+sin2C
证明:
对 △ A P Q △APQ △APQ用张角定理: s i n ∠ O A Q A P + s i n ∠ O A P A Q = s i n ∠ P A Q A O \frac{sin∠OAQ}{AP}+\frac{sin∠OAP}{AQ}=\frac{sin∠PAQ}{AO} APsin∠OAQ+AQsin∠OAP=AOsin∠PAQ
⟺ c o s B A P + c o s C A Q = s i n A R \iff \frac{cosB}{AP}+\frac{cosC}{AQ}=\frac{sinA}{R} ⟺APcosB+AQcosC=RsinA
等号左右均乘 4 R s i n B s i n C 4RsinBsinC 4RsinBsinC即证