[数学]三角形的五心之外心

三角形外心的性质

三角形外接圆的圆心称为三角形的外心。外心也是三角形三边的中垂线的交点

性质1

设O为 △ A B C △ABC ABC所在平面内的一点,则 O O O △ A B C △ABC ABC的外心的充要条件是下列条件之一
1.1 O A = O B = O C OA=OB=OC OA=OB=OC

充分性证明:
O O O为圆心, O A OA OA为半径作圆,则该圆过 A , B , C A,B,C A,B,C
因此 圆 O 圆O O △ A B C △ABC ABC的外接圆
所以 O O O △ A B C △ABC ABC的外心
必要性证明:
△ A B C △ABC ABC的外接圆圆心为 O O O,而 A , B , C A,B,C A,B,C在圆上,所以 O A = O B = O C OA=OB=OC OA=OB=OC

1.2 ∠ B O C = 2 ∠ A , ∠ C O A = 2 ∠ B , ∠ A O B = 2 ∠ C ∠BOC=2∠A,∠COA=2∠B,∠AOB=2∠C BOC=2∠ACOA=2∠BAOB=2∠C
1.3 O B = O C , ∠ B O C = 2 ∠ A OB=OC,∠BOC=2∠A OB=OC,BOC=2∠A

充分性证明:
O O O为圆心, O B OB OB为半径作圆,则该圆过 B , C B,C B,C
根据圆周角定理逆定理,点 A A A也在圆 O O O
故圆 O O O △ A B C △ABC ABC的外接圆, O O O为外心
必要性证明:
因为圆 O O O △ A B C △ABC ABC的外接圆,所以 O B = O C OB=OC OB=OC
根据圆周角定理 ∠ B O C = 2 ∠ A ∠BOC=2∠A BOC=2∠A

性质2

三角形外心到三边的有向距离(外心在边的形内一侧距离为正,形外一侧为负)之和等于其外接圆半径与内切圆半径的和

证明:
我们发现 d A = R c o s A d_A=RcosA dA=RcosA
则即证 R ( c o s A + c o s B + c o s C ) = ( R + r ) R(cosA+cosB+cosC)=(R+r) R(cosA+cosB+cosC)=(R+r)
   ⟺    R ( c o s A + c o s B + c o s C ) = R + 2 R ⋅ s i n A s i n B s i n C s i n A + s i n B + s i n C \iff R(cosA+cosB+cosC)=R+2R·\frac{sinAsinBsinC}{sinA+sinB+sinC} R(cosA+cosB+cosC)=R+2RsinA+sinB+sinCsinAsinBsinC
   ⟺    ( c o s A + c o s B + c o s C − 1 ) ( s i n A + s i n B + s i n C ) = 2 s i n A s i n B s i n C \iff (cosA+cosB+cosC-1)(sinA+sinB+sinC)=2sinAsinBsinC (cosA+cosB+cosC1)(sinA+sinB+sinC)=2sinAsinBsinC
由三角恒等式: s i n A + s i n B + s i n C = 4 c o s A 2 c o s B 2 c o s C 2 sinA+sinB+sinC=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2} sinA+sinB+sinC=4cos2Acos2Bcos2C
c o s A + c o s B + c o s C = 1 + 4 s i n A 2 s i n B 2 s i n C 2 cosA+cosB+cosC=1+4sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2} cosA+cosB+cosC=1+4sin2Asin2Bsin2C相乘即证

性质3

△ A B C △ABC ABC的外心 O O O任作一条直线与 A B , A C AB,AC AB,AC所在的直线分别相交于 P , Q P,Q P,Q,则
A B A P s i n 2 B + A C A Q s i n 2 C = s i n 2 A + s i n 2 B + s i n 2 C \frac{AB}{AP}sin2B+\frac{AC}{AQ}sin2C=sin2A+sin2B+sin2C APABsin2B+AQACsin2C=sin2A+sin2B+sin2C

证明:
△ A P Q △APQ APQ张角定理 s i n ∠ O A Q A P + s i n ∠ O A P A Q = s i n ∠ P A Q A O \frac{sin∠OAQ}{AP}+\frac{sin∠OAP}{AQ}=\frac{sin∠PAQ}{AO} APsinOAQ+AQsinOAP=AOsinPAQ
   ⟺    c o s B A P + c o s C A Q = s i n A R \iff \frac{cosB}{AP}+\frac{cosC}{AQ}=\frac{sinA}{R} APcosB+AQcosC=RsinA
等号左右均乘 4 R s i n B s i n C 4RsinBsinC 4RsinBsinC即证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值