[数学]三角形的五心之内心

三角形内心的性质

三角形内切圆的圆心称为三角形的内心。内心也是三角形三个角的角平分线的交点

性质1

1.1

I I I △ A B C △ABC ABC内一点,则 I I I △ A B C △ABC ABC内心的充要条件是下列条件之一:
1.1.1 I I I △ A B C △ABC ABC三边距离相等

充分性证明:
I I I到三边距离为 r r r
I I I为圆心, r r r为半径作圆
因为圆心 I I I A B AB AB的距离为 r r r等于半径
所以 A B AB AB是圆的切线,同理BC,AC也是圆的切线
所以该圆是 △ A B C △ABC ABC的内切圆,故 I I I △ A B C △ABC ABC的内心
必要性证明:
I I I △ A B C △ABC ABC的内心时,
设圆的切点分别为 D , E , F D,E,F D,E,F,则 I D ⊥ B C , I E ⊥ A C , I F ⊥ A B ID⊥BC,IE⊥AC,IF⊥AB IDBC,IEAC,IFAB
I D = I E = I F = r ID=IE=IF=r ID=IE=IF=r,所以 I I I △ A B C △ABC ABC三边距离相等

1.1.2 ∠ A I B = 90 ° + 1 2 ∠ C , ∠ B I C = 90 ° + 1 2 ∠ A , ∠ C I A = 90 ° + 1 2 ∠ B ∠AIB=90°+\frac{1}{2}∠C,∠BIC=90°+\frac{1}{2}∠A,∠CIA=90°+\frac{1}{2}∠B AIB=90°+21C,BIC=90°+21A,CIA=90°+21B

充分性证明:
∠ A I B + ∠ A B I + ∠ B A I = 180 ° ∠AIB+∠ABI+∠BAI=180° AIB+ABI+BAI=180°
∠ C + ∠ B A C + ∠ A B C = 180 ° ∠C+∠BAC+∠ABC=180° C+BAC+ABC=180°
∵ ∠ A I B = 90 ° + 1 2 ∠ C ∵∠AIB=90°+\frac{1}{2}∠C AIB=90°+21C
∴ ( ∠ A B I + ∠ B A I ) = 1 2 ( ∠ B A C + ∠ A B C ) ∴(∠ABI+∠BAI)=\frac{1}{2}(∠BAC+∠ABC) (ABI+BAI)=21(BAC+ABC)
同理有: ∴ ( ∠ B C I + ∠ C B I ) = 1 2 ( ∠ A C B + ∠ A B C ) ∴(∠BCI+∠CBI)=\frac{1}{2}(∠ACB+∠ABC) (BCI+CBI)=21(ACB+ABC) ∴ ( ∠ A C I + ∠ C A I ) = 1 2 ( ∠ B A C + ∠ A C B ) ∴(∠ACI+∠CAI)=\frac{1}{2}(∠BAC+∠ACB) (ACI+CAI)=21(BAC+ACB)
可解出 A I AI AI ∠ B A C ∠BAC BAC的角平分线, B I BI BI ∠ A B C ∠ABC ABC的角平分线, C I CI CI ∠ A C B ∠ACB ACB的角平分线
所以 I I I △ A B C △ABC ABC的内心

必要性证明:
∠ A I B + ∠ A B I + ∠ B A I = 180 ° ∠AIB+∠ABI+∠BAI=180° AIB+ABI+BAI=180°
∠ C + ∠ B A C + ∠ A B C = 180 ° ∠C+∠BAC+∠ABC=180° C+BAC+ABC=180°
∵ ∠ B A C = 2 ∠ B A I , ∠ A B C = 2 ∠ A B I ∵∠BAC=2∠BAI,∠ABC=2∠ABI BAC=2∠BAI,ABC=2∠ABI
∴ ∠ A I B = 90 ° + 1 2 ∠ C ∴∠AIB=90°+\frac{1}{2}∠C AIB=90°+21C
另外两个同理

1.1.3 △ A I B , △ B I C , △ C I A △AIB,△BIC,△CIA AIB,BIC,CIA的外心均在 △ A B C △ABC ABC的外接圆上
由性质1.1.2可以证明

1.2

I I I △ A B C △ABC ABC内一点, A I AI AI所在直线交 △ A B C △ABC ABC的外接圆于 D D D。则 I I I △ A B C △ABC ABC内心的充要条件是 I D = D B = D C ID=DB=DC ID=DB=DC

充分性证明:
∵ D B = D C ∵DB=DC DB=DC
∴ ∠ B A D = ∠ C A D ∴∠BAD=∠CAD BAD=CAD
∴ A I ∴AI AI ∠ B A C ∠BAC BAC的角平分线
∵ I D = D B ∵ID=DB ID=DB
∴ ∠ D B I = ∠ D I B ∴∠DBI=∠DIB DBI=DIB
∠ C B I + ∠ C B D = ∠ A B I + ∠ B A I ∠CBI+∠CBD=∠ABI+∠BAI CBI+CBD=ABI+BAI
∠ C B I = ∠ A B I ∠CBI=∠ABI CBI=ABI
所以 B I BI BI ∠ A B C ∠ABC ABC的角平分线
因此 I I I是内心
必要性证明:
∵ I ∵I I是内心
∴ ∠ B A D = ∠ C A D ∴∠BAD=∠CAD BAD=CAD
∴ D 是 B C ⌢ 的中点 ∴ D是\overset{\frown}{BC}的中点 DBC的中点
D B = D C DB=DC DB=DC
欲证 I D = D B ID=DB ID=DB,只需证 ∠ D B I = ∠ D I B ∠DBI=∠DIB DBI=DIB
∵ ∠ D B I = ∠ C B I + ∠ D B C = ∠ A B I + ∠ D C B = ∠ A B I + ∠ D A B = ∠ D I B ∵∠DBI=∠CBI+∠DBC=∠ABI+∠DCB=∠ABI+∠DAB=∠DIB DBI=CBI+DBC=ABI+DCB=ABI+DAB=DIB
∴ I D = D B = D C ∴ID=DB=DC ID=DB=DC

图1

1.3

一条直线截三角形,把周长 l l l与面积 S S S分为对应的两部分 l 1 , l 2 l_1,l_2 l1,l2 S 1 , S 2 S_1,S_2 S1,S2,则此直线经过三角形内心的充要条件是 l 1 l 2 = S 1 S 2 \frac{l_1}{l_2}=\frac{S_1}{S_2} l2l1=S2S1

充分性证明:
∠ A ∠A A的角平分线与PQ交于 I I I I I I在三边上的射影为 D , E , F D,E,F D,E,F
I E = I F IE=IF IE=IF,所以 S 1 = l 1 ⋅ I E S_1=l_1·IE S1=l1IE, S 2 = I D ⋅ B C + ( B P + C Q ) ⋅ I E S_2=ID·BC+(BP+CQ)·IE S2=IDBC+(BP+CQ)IE
比较可得 I D = I E ID=IE ID=IE,故 I I I为内心
必要性证明:
S 1 S 2 = A P ⋅ I F + A Q ⋅ I E I D ⋅ B C + I E ⋅ C Q + I F ⋅ B P \frac{S_1}{S_2}=\frac{AP·IF+AQ·IE}{ID·BC+IE·CQ+IF·BP} S2S1=IDBC+IECQ+IFBPAPIF+AQIE
因为 I I I是内心,所以 I D = I E = I F ID=IE=IF ID=IE=IF
S 1 S 2 = A P + A Q B C + B P + C Q = l 1 l 2 \frac{S_1}{S_2}=\frac{AP+AQ}{BC+BP+CQ}=\frac{l_1}{l_2} S2S1=BC+BP+CQAP+AQ=l2l1

性质2

I I I △ A B C △ABC ABC的内心, B C = a , C A = b , A B = c BC=a,CA=b,AB=c BC=a,CA=b,AB=c I I I △ A B C △ABC ABC上的射影为 D , E , F D,E,F D,E,F,内切圆半径为 r r r,半周长 p = a + b + c 2 p=\frac{a+b+c}{2} p=2a+b+c

2.1

S △ A B C = p r S_{△ABC}=pr SABC=pr

证明:
S △ A B I = 1 2 A B ⋅ I F = 1 2 c r S_{△ABI}=\frac{1}{2}AB·IF=\frac{1}{2}cr SABI=21ABIF=21cr S △ A C I = 1 2 A C ⋅ I E = 1 2 b r S_{△ACI}=\frac{1}{2}AC·IE=\frac{1}{2}br SACI=21ACIE=21br S △ B C I = 1 2 B C ⋅ I D = 1 2 a r S_{△BCI}=\frac{1}{2}BC·ID=\frac{1}{2}ar SBCI=21BCID=21ar
累加得: S △ A B C = 1 2 r ( a + b + c ) = p r S_{△ABC}=\frac{1}{2}r(a+b+c)=pr SABC=21r(a+b+c)=pr

2.2

A E = A F = p − a , B D = B F = p − b , C E = C D = p − c AE=AF=p-a,BD=BF=p-b,CE=CD=p-c AE=AF=pa,BD=BF=pb,CE=CD=pc

证明:
切线长定理得: A E = A F , B D = B F , C E = C D AE=AF,BD=BF,CE=CD AE=AF,BD=BF,CE=CD
A E = A F = x , B D = B F = y , C E = C D = z AE=AF=x,BD=BF=y,CE=CD=z AE=AF=x,BD=BF=y,CE=CD=z
x + z = b , x + y = c , y + z = a x+z=b,x+y=c,y+z=a x+z=b,x+y=c,y+z=a
因此 A E = A F = p − a , B D = B F = p − b , C E = C D = p − c AE=AF=p-a,BD=BF=p-b,CE=CD=p-c AE=AF=pa,BD=BF=pb,CE=CD=pc

2.3

a b c r = p ⋅ A I ⋅ B I ⋅ C I abcr=p·AI·BI·CI abcr=pAIBICI

证明:
A I AI AI延长后与 B C BC BC交于A1,利用Stewart定理可得 A A 1 2 = b c ( a + b + c ) ( b + c − a ) ( b + c ) 2 AA_1^2=\frac{bc(a+b+c)(b+c-a)}{(b+c)^2} AA12=(b+c)2bc(a+b+c)(b+ca)
再利用 A I I A 1 = b + c a \frac{AI}{IA_1}=\frac{b+c}{a} IA1AI=ab+c,可得 A I = b c ( b + c − a ) a + b + c AI=\sqrt{\frac{bc(b+c-a)}{a+b+c}} AI=a+b+cbc(b+ca)
注意到海伦公式即得 a b c r = p ⋅ A I ⋅ B I ⋅ C I abcr=p·AI·BI·CI abcr=pAIBICI

性质3

△ A B C △ABC ABC内心 I I I任作一条直线,分别交 A B , A C AB,AC AB,AC P , Q P,Q P,Q,则
A B A P ⋅ A C + A C A Q ⋅ A B = A B + B C + C A \frac{AB}{AP}·AC+\frac{AC}{AQ}·AB=AB+BC+CA APABAC+AQACAB=AB+BC+CA

证明:
A D A I = S 四边形 A P D Q S △ A P Q = S △ A P D + S △ A Q D S △ A P Q = A C A Q ⋅ S △ A B D S △ A B C + A B A P ⋅ S △ A C D S △ A B C = A C A Q ⋅ B D B C + A B A P ⋅ C D B C \frac{AD}{AI}=\frac{S_{四边形APDQ}}{S_{△APQ}}=\frac{S_{△APD}+S_{△AQD}}{S_{△APQ}}=\frac{AC}{AQ}·\frac{S_{△ABD}}{S_{△ABC}}+\frac{AB}{AP}·\frac{S_{△ACD}}{S_{△ABC}}=\frac{AC}{AQ}·\frac{BD}{BC}+\frac{AB}{AP}·\frac{CD}{BC} AIAD=SAPQS四边形APDQ=SAPQSAPD+SAQD=AQACSABCSABD+APABSABCSACD=AQACBCBD+APABBCCD
∵ I ∵I I是内心
∴ A D A M = a + b + c b + c , B D B C = c b + c , C D B C = b b + c ∴\frac{AD}{AM}=\frac{a+b+c}{b+c},\frac{BD}{BC}=\frac{c}{b+c},\frac{CD}{BC}=\frac{b}{b+c} AMAD=b+ca+b+c,BCBD=b+cc,BCCD=b+cb
代入即证

性质4

△ A B C △ABC ABC的内心为 I I I △ A B C △ABC ABC内一点P在 B A , C A , A B BA,CA,AB BA,CA,AB上的射影分别为 D , E , F D,E,F D,E,F,当 P P P I I I重合时, B C P D + C A P E + A B P F \frac{BC}{PD}+\frac{CA}{PE}+\frac{AB}{PF} PDBC+PECA+PFAB的值最小

证明:
B C ⋅ P D + C A ⋅ P E + A B ⋅ P F = 2 S △ A B C BC·PD+CA·PE+AB·PF=2S_{△ABC} BCPD+CAPE+ABPF=2SABC
Cauchy不等式得: B C P D + C A P E + A B P F ≥ ( B C + C A + A B ) 2 B C ⋅ P D + C A ⋅ P E + A B ⋅ P F = ( a + b + c ) 2 2 S △ A B C \frac{BC}{PD}+\frac{CA}{PE}+\frac{AB}{PF}\ge \frac{(BC+CA+AB)^2}{BC·PD+CA·PE+AB·PF}=\frac{(a+b+c)^2}{2S_{△ABC}} PDBC+PECA+PFABBCPD+CAPE+ABPF(BC+CA+AB)2=2SABC(a+b+c)2
取等条件为 B C P D B C ⋅ P D = C A P E C A ⋅ P E = A B P F A B ⋅ P F \frac{\frac{BC}{PD}}{BC·PD}=\frac{\frac{CA}{PE}}{CA·PE}=\frac{\frac{AB}{PF}}{AB·PF} BCPDPDBC=CAPEPECA=ABPFPFAB,即 P D = P E = P F PD=PE=PF PD=PE=PF,所以 P P P I I I重合

  • 19
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值