【计算天线的Q和D/Q的物理界限】计算了由非磁性材料组成、并且由各种几何形状所限定的线偏振天线的Q和D/Q的物理界限(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

参考文献1:

线性极化天线新物理界限的示例

Illustrations of New Physical Bounds on Linearly Polarized Antennas | IEEE Journals & Magazine | IEEE Xplore

https://ieeexplore.ieee.org/document/4909448

Abstract:
最近的一种对任意形状天线的物理界限的方法被进行了数值说明。特别是,对由长方体、有限圆柱体和平面矩形所限定的天线的物理界限进行了展示。这些界限与各种小型天线的数值结果进行了验证,结果显示具有良好的一致性。

参考文献2:

任意形状天线的物理限制

https://royalsocietypublishing.org/doi/10.1098/rspa.2007.1893
摘要
本文对任意形状的天线的带宽、实现增益、Q因子和指向性进行了推导。带宽和可实现增益的乘积被证明受到长波长、高对比度极化率二元数的特征值的上限约束。这些二元数与天线体积成正比,并且易于对任意几何形状进行确定。详细分析了椭球形天线体积,并给出了一些常见几何形状的数值结果。该理论与球形几何的经典Chu限制进行了验证,并且对于非球形几何形状,结果显示出了更为尖锐的直向性和Q因子比的界限。

📚2 运行结果

部分代码:

c0 = 299792458;  % speed of light

if nargin < 6
    fig_num = 0; % no figures
end
if nargin < 5
    abs_eff = 1/2; % small dipole type antennas
end
if nargin < 4
    frequency = c0/(2*pi); % given by k = 1;
end
if nargin < 3  % plot the D/Q-bound for a rectangle with
    height = logspace(-2,3,301);
    width = 1;
    geometry = 'rectangle';
    fig_num = 1;
end

% test of input format
Nl = length(height);
Nd = length(width);
Nf = length(frequency);
Nxi = max([Nl Nd Nf]);
formatcheck = ([Nl Nd Nf]==Nxi | [Nl Nd Nf]==1);
if sum(formatcheck)~=3
    disp('Wrong input format, see help AntennaQ');
    DQ=[]; Q=[]; xi=[]; gamma=[]; a=[]; ka=[];
    return
end
        
k = frequency/c0*2*pi;  % wavenumber
xi = height./width;  % semi axis ratio
Nxi = length(xi);       % Number of evaluation points


switch geometry
    case {'rec','rectangle','rec_v','rectangle_v'}
        % for xi \leq 1
        % gamma/a^3 = p1(xi)/q1(xi)*xi^2
        p1 = [-1.651 7.328 6.275];
        q1 = [1.242 1.025 0.8 1];
        ind1 = find(xi<=1);  % case 1
        xi1 = xi(ind1);
        gamma1 = polyval(p1,xi1)./polyval(q1,xi1).*xi1.^2;

        % for xi > 1
        % gamma/a^3 = gammasv*p2(1/xi)/q2(1/xi)
        p2 = [2.266 -11.42 18.098 1.001];
        q2 = [24.78 -0.309 17.074 1];
        ind2 = find(xi>1);  % case 2

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值