💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
针对AWGN(加性高斯白噪声)和衰落信道下16-QAM(16阶正交幅度调制)的“联合界限”、“联合巴特查里亚界限”和“最小欧几里得距离界限”,以及提到的fading_16QAM2、Gaussian_16QAM、GaussianAM4的研究文档,以下提供详细的分析和解释:
一、基本概念与背景
-
AWGN信道:
- AWGN信道是一个理想化的模型,它假设信道中只存在加性高斯白噪声,并且噪声在各个频率上具有相同的功率谱密度。
- 信道容量由香农定理给出。
-
衰落信道:
- 衰落信道考虑了多径效应的影响,信号在传输过程中会经历多条路径,导致信号强度随机变化。
- 常见的衰落模型包括Rayleigh衰落和Nakagami衰落。
-
16-QAM:
- 16-QAM是一种调制技术,通过改变信号的幅度和相位来表示不同的数据。
- 16-QAM的每个符号可以携带4个比特的信息,具有较高的数据传输效率。
二、联合界限、联合巴特查里亚界限和最小欧几里得距离界限
-
联合界限:
- 联合界限是一种理论上的误差概率上限,用于评估通信系统的性能。
- 在16-QAM系统中,联合界限通常通过计算符号误差率(SER)来得到,进而可以推导出比特误差率(BER)。
-
联合巴特查里亚界限:
- 联合巴特查里亚界限是另一种误差概率上限,它基于巴塔查里亚距离(一种衡量两个概率分布之间差异的度量)来计算。
- 在16-QAM系统中,联合巴特查里亚界限同样可以用于评估系统的性能。
-
最小欧几里得距离界限:
- 最小欧几里得距离界限是基于星座图中符号之间的最小距离来计算的。
- 在16-QAM系统中,通过优化星座图的设计,可以增大符号之间的最小距离,从而降低误差概率。
三、研究文档概述
-
fading_16QAM2:
- 这可能是指关于在衰落信道下16-QAM性能的研究文档。
- 该文档可能涉及衰落信道的建模、16-QAM的调制与解调、以及在不同衰落条件下的系统性能评估。
-
Gaussian_16QAM:
- 这可能是指关于在AWGN信道下16-QAM性能的研究文档。
- 该文档可能关注AWGN信道的特点、16-QAM的调制方式、以及在不同噪声条件下的系统性能表现。
-
GaussianAM4:
- GaussianAM4可能指的是在AWGN信道下的4阶幅度调制(AM)的研究。
- 尽管这里提到的是AM而不是QAM,但研究内容可能涉及调制技术、信道特性、以及性能评估等方面。
四、总结
综上所述,对于AWGN和衰落信道下16-QAM的“联合界限”、“联合巴特查里亚界限”和“最小欧几里得距离界限”的研究,是评估通信系统性能的重要方面。同时,针对fading_16QAM2、Gaussian_16QAM以及GaussianAM4等研究文档,它们分别关注了不同信道条件下的调制技术性能。这些研究对于优化通信系统设计、提高数据传输效率和可靠性具有重要意义。
📚2 运行结果
2.1 fading_16QAM2
2.2 Gaussian_16QAM
2.3 GaussianAM4
部分代码:
%% Parameters
L=5e4; % Total Number of transmitted symbols
N=4; % Number of bits per symbol
M=2^N; % Number of different constellation symbols
LB=N*L; % Length of random Bit Stream
%% Generatig Constellation symbol
Ts=2; % symbol time
A=1;
As=A.*sqrt(Ts/2);
Dmin=2*As;
S=As.*qammod([0:15], 16, 0, 'gray'); % Generated defaultly (+,- 1 and +,-3)
Es=sum(((real(S)).^2)+((imag(S)).^2))./length(S); % Average symbol Energy
%% Defining Energy and SNR
EB=Es/N; % Energy of Bit
EBN0dB=0:10; % EB/N0 in dB
ESN0dB=EBN0dB+10*log10(N); % ES/N0 in dB
EBN0=10.^(EBN0dB/10); % EB/N0
ESN0=10.^(ESN0dB/10); % ES/N0
N0=Es./ESN0; % Noise Density
Variance=N0./2; % Variance of Noise
StandardD=sqrt(Variance); % Standard deviation of Noise
Mean=0; % Mean of Noise
BER_Sim=[]; % Simulated BER will be stored in this empty matrix
for gg=1:length(EBN0)
%% Generating random Bit Stream and converting it into symbol Stream
Bits=randi([0 1],1,LB); % Random Stream of Bits
Bits_Parallel=reshape(Bits,N,L); % Parallel bits to be programmed
De_Numbers=(bi2de(Bits_Parallel',2)')+1; % Location for symmbols
Symbols=S(De_Numbers); % Stream of symbols that is going to be sent
%% Adding Gaussina noise to transmitted signal
Noise=sqrt(N0(gg)/2).*(randn(1,L)+1j*(randn(1,L)));
Y=Symbols+Noise;
%% Decision
Loc=[];
for kk=1:L
D=abs(Y(kk)-S); % Distances between R and all symbols
MinD=min(D); % min Distance
LminD=find(D==MinD); % Location of minimum Distance
Loc=[Loc LminD]; % Location of all symbol stream
end
RB=reshape(de2bi(Loc-1,N)',1,LB); % Received Bits
BER_Sim=[BER_Sim (sum(abs(RB-Bits)))/LB]; % Bit Error rate
end
%% Union Bound Error Probability
% Symbol Error Rate
sq2N0=sqrt(2.*N0);
Dmi_sq2N0=Dmin./sq2N0;
SER_Union_Bound= ((3/1).*qfunc((1.*sqrt(1 )).*Dmi_sq2N0))...
+((2/1).*qfunc((2.*sqrt(1 )).*Dmi_sq2N0))...
+((1/1).*qfunc((3.*sqrt(1 )).*Dmi_sq2N0))...
+((9/4).*qfunc((1.*sqrt(2 )).*Dmi_sq2N0))...
+((2/2).*qfunc((2.*sqrt(2 )).*Dmi_sq2N0))...
+((1/4).*qfunc((3.*sqrt(2 )).*Dmi_sq2N0))...
+((3/1).*qfunc((1.*sqrt(5 )).*Dmi_sq2N0))...
+((3/2).*qfunc((1.*sqrt(10)).*Dmi_sq2N0))...
+((1/1).*qfunc((1.*sqrt(13)).*Dmi_sq2N0));
% +((1/2).*qfunc((1.*sqrt(8 )).*Dmi_sq2N0));
BER_Union_Bound=SER_Union_Bound/N;
%% Union Bhattacharyya Bound Error Probability
% Symbol Error Rate
sqDmi_sq2N02=(-1).*(Dmi_sq2N0.^2)./2;
SER_Bhattacharyya_Bound= ((3/1).*exp((1.*sqrt(1 )).*sqDmi_sq2N02))...
+((2/1).*exp((2.*sqrt(1 )).*sqDmi_sq2N02))...
+((1/1).*exp((3.*sqrt(1 )).*sqDmi_sq2N02))...
+((9/4).*exp((1.*sqrt(2 )).*sqDmi_sq2N02))...
+((2/2).*exp((2.*sqrt(2 )).*sqDmi_sq2N02))...
+((1/4).*exp((3.*sqrt(2 )).*sqDmi_sq2N02))...
+((3/1).*exp((1.*sqrt(5 )).*sqDmi_sq2N02))...
+((3/2).*exp((1.*sqrt(10)).*sqDmi_sq2N02))...
+((1/1).*exp((1.*sqrt(13)).*sqDmi_sq2N02));
% +((1/2).*exp((1.*sqrt(8 )).*sqDmi_sq2N02));
BER_Bhattacharyya_Bound=SER_Bhattacharyya_Bound/N;
%% Minimum Euclidean Distance Bound Error Probability
% Symbol Error Rate
SER_Minimum_Euclidean_Distance_Bound=((M-1).*qfunc(Dmi_sq2N0));
BER_Minimum_Euclidean_Distance_Bound=SER_Minimum_Euclidean_Distance_Bound/N;
%% approximate upper bound according to number of Dmin
% Symbol Error Rate
% average number of Dmin for M-QAM
N2=4; % Numberof symbols that have two adjacent symbols with minimum distance
N3=4*(sqrt(M)-2); % Numberof symbols that have three adjacent symbols with minimum distance
N4=M-N2-N3; % Numberof symbols that have three adjacent symbols with minimum distance
Avg_N_Dmin=((N2*2)+(N3*3)+(N4*4))/M; % Average Number of Dmin
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1] Chrisikos G .Analysis of 16-QAM over a nonlinear channel[J].IEEE International Symposium on Personal, 2002.DOI:10.1109/PIMRC.1998.731409.
[2]周鹏,赵春明,史志华,等.AWGN信道中载波频偏影响下的PCC-OFDM系统性能分析[J].中国科学(E辑:信息科学), 2007.DOI:CNKI:SUN:JEXK.0.2007-10-009.
[3]侯磊,张灿,高绍帅,等.基于高性能编码调制映射的联合解调译码方法[J].电子学报, 2018, 46(9):7.DOI:CNKI:SUN:DZXU.0.2018-09-021.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取