基于帝企鹅优化算法AFO的无人机路径规划研究(Matlab代码实现)

    💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、帝企鹅优化算法AFO概述

三、无人机路径规划问题建模

四、基于AFO算法的无人机路径规划方法

五、仿真实验与结果分析

六、结论与展望

📚2 运行结果

🎉3 参考文献 

 🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

一、引言

无人机路径规划是无人机技术中的关键领域,尤其在复杂地形和动态环境中,无人机需要克服多种障碍,确保安全、高效地完成任务。帝企鹅优化算法AFO作为一种新兴的仿生优化算法,模拟了帝企鹅在极端环境下的觅食行为,具有全局搜索能力强、收敛速度快等特点,适用于无人机路径规划问题。

二、帝企鹅优化算法AFO概述

  1. 算法背景:帝企鹅是群居性动物,生活在南极极端环境中。它们通过集群取暖、动态轮换位置等行为来应对严寒。这些行为模式与智能优化算法中的搜索空间探索与开发过程相似。

  2. 核心思想:AFO算法借鉴帝企鹅的生存策略,将搜索空间中的每个候选解视为一个“企鹅”。通过模拟帝企鹅在南极环境中的行为,逐步逼近问题的最优解。算法根据每个解的质量(即目标函数的值)来决定其所处的群体位置,并通过动态轮换机制实现全局搜索和局部开发的平衡。

  3. 关键步骤

    • 初始群体生成:在搜索空间中随机生成一个帝企鹅群体,每个企鹅代表一个可能的解。
    • 位置更新与温度梯度:根据温度梯度控制候选解的更新幅度和方向,类似于帝企鹅调整位置以维持体温。
    • 群体中心与轮换机制:较好的候选解被视为群体中心,引导整个群体的搜索方向。通过轮换机制,动态调整企鹅的位置,避免陷入局部最优。
    • 协作与竞争:帝企鹅之间既存在协作关系也存在竞争关系,这有助于算法在全局搜索和局部开发之间保持平衡。

三、无人机路径规划问题建模

  1. 问题定义:无人机路径规划是指在满足一定约束条件下,找到一条从起点到终点的最优路径。这些约束条件包括无人机的动力学特性、飞行环境(如地形起伏、障碍物等)以及任务需求等。
  2. 数学模型:建立无人机路径规划的数学模型,包括定义决策变量(如无人机的位置、姿态等)、目标函数(如路径长度、能耗等)以及约束条件(如最大转弯角、最大爬升角或下滑角、最低和最高飞行高度等)。
  3. 复杂地形处理:将复杂地形(如山体、雷暴区等)进行等效表示,如采用圆锥体表示山体、球体表示雷暴区等。通过构建三维地图,为无人机路径规划提供准确的飞行环境信息。

四、基于AFO算法的无人机路径规划方法

  1. 算法设计:将AFO算法应用于无人机路径规划问题中,设计具体的算法流程。包括初始化帝企鹅群体、计算适应度值、更新企鹅位置、判断终止条件等步骤。
  2. 适应度函数设计:根据无人机路径规划问题的目标函数和约束条件,设计适应度函数。该函数用于评估每个候选解(即每条路径)的优劣程度。
  3. 动态调整机制:根据实时环境信息(如障碍物位置变化、风速风向等),动态调整无人机的路径规划结果。这要求AFO算法具有较强的自适应能力和鲁棒性。

五、仿真实验与结果分析

  1. 仿真环境设置:构建三维仿真环境,模拟复杂地形和动态飞行条件。设置无人机的起飞点、目标点以及飞行过程中的障碍物等。
  2. 算法参数设置:根据具体问题需求,设置AFO算法的参数(如帝企鹅群体规模、最大迭代次数、温度梯度等)。
  3. 实验结果展示:通过仿真实验,得到无人机在复杂地形中的最优路径。展示路径的三维图形、适应度曲线等指标,分析算法的性能和收敛速度。
  4. 对比分析:将AFO算法与其他优化算法(如粒子群算法、萤火虫算法等)进行对比分析,评估AFO算法在无人机路径规划问题中的优势和不足。

六、结论与展望

  1. 研究结论:总结基于AFO算法的无人机路径规划方法的研究成果和实验结论。指出AFO算法在全局搜索能力、收敛速度以及自适应调整机制等方面的优势。
  2. 未来展望:提出进一步的研究方向和改进措施。如将AFO算法与深度学习相结合,提高算法的泛化能力和鲁棒性;将AFO算法应用于多无人机协同路径规划问题等。

📚2 运行结果

 

部分代码:

function [fit,result,x0]=aimFcn_1(x,option,data)
x0=x;
%% 
x=reshape(x,data.mapSize0);
%%

S=data.S0;
E=data.E0;
flag=x*0;
path=S;
map=data.map;
while sum(S==E)~=3
    % 可移动点
    nextN=repmat(S,length(data.direction(:,1)),1)+data.direction;
    % 剔除超界点
    flag=nextN(:,1)*0;
    for i=1:length(nextN(:,1))
        for j=1:3
            if nextN(i,j)<=0 ||nextN(i,j)>data.mapSize0(j)
                flag(i)=1;
            end
        end
    end
    position=find(flag==1);
    nextN(position,:)=[];
    % 剔除不可移动点
    flag=nextN(:,1)*0;
    for i=1:length(nextN(:,1))
        no1=nextN(i,1);
        no2=nextN(i,2);
        no3=nextN(i,3);
        if map(no1,no2,no3)==1
            flag(i)=1;
        end
    end
    position=find(flag==1);
    nextN(position,:)=[];
    if isempty(nextN)
        S=path(end-1,:);
        path(end,:)=[];
        continue;
    end
    %
    D1=nextN(:,1)*0;
    D2=nextN(:,1)*0;
    pri=nextN(:,1)*0;
    for i=1:length(nextN(:,1))
        no1=nextN(i,1);
        no2=nextN(i,2);
        no3=nextN(i,3);
        D1(i)=norm(nextN(i,:)-S);
        D2(i)=norm(nextN(i,:)-E);
        pri(i)=x(no1,no2,no3);
    end
    [~,no]=min((D1+D2).*pri.^0.5);
    path=[path;nextN(no,:)];
    S=nextN(no,:);
    map(S(1),S(2),S(3))=1;
end
D=0;
for i=1:length(path(:,1))-1
    D=D+norm(path(i,:)-path(i+1,:));
end
fit=D;
if nargout>1
    result.fit=fit;    %总目标
    result.path=path;
end
end

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

[1]马华伟,马凯,郭君.考虑多投递的带无人机车辆路径规划问题研究[J].计算机工程,2022,48(8):299-305

[2]陈亚青,郑稀元,韩丹,刘成.民用无人机发展管理现状及路径规划研究进展[J].科学技术与工程,2022,22(15):5951-5966

 🌈Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值