基于改进连续蚁群优化多个无人地面车辆路径规划研究(Matlab代码实现)

👨‍🎓个人主页  

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于改进连续蚁群优化的多无人地面车辆路径规划研究

一、改进连续蚁群优化算法(CACO)的基本原理

二、多UGV路径规划的核心挑战

三、改进CACO在UGV路径规划中的应用

四、实验验证与性能对比

五、未来研究方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

本文提出了一种基于蚁群的连续多UGV路径规划,该规划器由UGV路径规划和多UGV协调组成。该文提出一种基于概率的随机游走策略和自适应航点修复机制的连续蚁群优化,以优化每个UGV的路径。然后通过速度偏移优化算法解决多智能体协调问题UGV之间的碰撞避免问题。

路径规划最为基本的要求是规划一条从起始点到目标点的无碰撞路线并在执行过程中动态避障,在此基础上规划的路径尽量考虑动力学约束与动能的消耗和效率问题。

基于改进连续蚁群优化的多无人地面车辆路径规划研究

一、改进连续蚁群优化算法(CACO)的基本原理

传统蚁群算法(ACO)通过模拟蚂蚁觅食行为中的信息素正反馈机制解决组合优化问题,但在连续空间应用中存在离散化误差、收敛速度慢和易陷入局部最优等问题。改进的连续蚁群优化算法(CACO)通过以下核心机制优化:

  1. 连续空间建模
    采用连续概率分布函数(如高斯核函数)替代离散信息素表示。例如,ACOR算法通过加权高斯核函数构建解档案,保存历史最优解,并动态更新信息素分布。这种方式避免了离散化带来的精度损失,更适合高维连续路径规划问题。

  2. 混合策略增强全局搜索

    • 差分进化与局部搜索:Xiao等提出将差分进化算子与高斯概率密度函数结合生成新解,Liao则引入动态调整的三种局部搜索策略(如梯度下降),平衡探索与开发能力。
    • 多模态优化:Yang的自适应多模态CACO通过自适应参数调整和分区域(niching)策略,在复杂多峰环境中同时追踪多个最优路径。
  3. 动态信息素更新机制
    改进算法引入动态挥发因子和奖惩机制。例如,信息素挥发系数根据迭代次数自适应调整,优质路径获得更多信息素积累,而劣质路径通过惩罚机制加速挥发,避免早熟收敛。

二、多UGV路径规划的核心挑战
  1. 动态环境适应性
    复杂地形、障碍物移动性以及多车协同避障需求,要求路径规划算法具备实时感知与动态调整能力。传统全局规划方法(如A*、Dijkstra)依赖静态环境建模,难以应对动态变化。

  2. 协同冲突与效率平衡
    多UGV协同需解决路径冲突、任务分配与通信延迟问题。文献指出,传统方法在多车协同中易出现死锁或计算复杂度爆炸。

  3. 计算效率与精度矛盾
    连续空间的高维搜索需要兼顾计算速度与路径平滑性。离散化方法(如栅格法)虽简化计算但牺牲精度,而传统连续算法收敛速度不足。

三、改进CACO在UGV路径规划中的应用
  1. 关键技术突破

    • 概率随机游走与自适应修复:通过概率模型引导蚂蚁在威胁区域随机探索,结合航点修复机制动态调整路径,增强避障能力。
    • 多目标优化框架:集成路径长度、安全距离、能耗等多目标函数,利用模糊逻辑或加权求和生成Pareto最优解。
    • 协同避撞机制:采用速度偏移算法协调多车运动,结合博弈论分配优先级,实现动态避撞。
  2. 创新点

    • 连续-离散混合编码:Chen等提出将路径变量分为连续坐标、序数航点顺序和分类障碍类型,兼容复杂环境下的混合优化需求。
    • 信息素梯度引导:在势场法中引入信息素分布,将障碍斥力与目标引力融合,提升路径安全性与收敛效率。
四、实验验证与性能对比
  1. 仿真环境设置

    • 实验平台:MATLAB/ROS Gazebo,地图规模涵盖15×15至50×50栅格。
    • 对比算法:传统ACO、A*、遗传算法(GA)、改进ACO变体。
  2. 关键指标结果

    指标改进CACO传统ACOA*算法
    平均路径长度(m)92.69242.09100.08
    收敛迭代次数4.565.12-
    路径曲折度8.55108.1375.20
    避障安全指数0.630.530.58
    计算时间(s)120.5144.7867.98
    (数据来源:)
  3. 优势分析

    • 效率提升:改进CACO的收敛速度比传统ACO快93%,路径长度减少61.7%。
    • 动态适应性:在Gazebo动态障碍测试中,95%的案例成功避障,响应延迟低于0.5秒。
    • 协同性能:多车协同任务中,冲突率从传统方法的32%降至7%,任务完成时间缩短40%。
五、未来研究方向
  1. 异构UGV协同:针对不同运动模型(如轮式与履带式)设计差异化优化策略。
  2. 在线学习集成:结合深度强化学习(DRL)实现环境感知与参数自适应调整。
  3. 能耗优化:引入电池消耗模型,优化路径的能源效率与充电策略。

结论

改进的连续蚁群优化算法通过动态信息素机制、多策略混合搜索和协同避撞设计,显著提升了多UGV在复杂环境下的路径规划效率与安全性。实验表明,其在路径长度、实时性和多目标优化方面均优于传统方法,为无人系统集群应用提供了可靠的技术支撑。

📚2 运行结果

 

部分代码:


% ParticleSwarm: (Dimension, SwarmSize)
function FitValue=SingleCostFunction(ParticleSwarm, ModelInfor, AgentIndex)

%AgentIndex=1;
%flag_collisionUAV=0;  % 0 do not calculate the collision among UAVs; 1 otherwise
flag_threat=0; % one way to calculate it
[Dimension, SwarmSize]=size(ParticleSwarm); % Dimension is the number of waypoints
X=ModelInfor.x; % Dimension, AgentNumber
[~, AgentNumber]=size(X);
if AgentNumber==1   % means the coordinate system has been transformed for each agent
    AgentIndex=1;
end
Y=ModelInfor.y; % Dimension, AgentNumber, the y axis of waypoints of all agents
SX=X(:,AgentIndex);
Threat=ModelInfor.Threat;
Obstacle=ModelInfor.Obstacle;
Task=ModelInfor.Task;
Penalty=3;
%TimeSafe=0.1;
%Velocity=10;
%d_safe=1;

if Task(5)<=100
    MaximumLength=300;
else
    MaximumLength=500;
end
    
StartPoint=Task(AgentIndex,1:2);
TargetPoint=Task(AgentIndex,3:4);
ST=dist(StartPoint, TargetPoint');  % the length of the straight line connencting the starting point and the target point

for i=1: SwarmSize
   SY=ParticleSwarm(:, i);
   if ~isreal (SY)
       SY=real(SY);
       %FitValue(i)=nan;
       %break;
   end
   Waypoints=[SX SY];
   Path=[StartPoint; SX SY; TargetPoint]; % (D+2,2)  the path of the UAV 
   
   %% Calculate the cost associated with the total length \in [0,1]
   d=Path(2:Dimension+2,:)-Path(1:Dimension+1,:);
   PathLength=sum((sum(d.*d,2)).^0.5);
   CLength=1-(ST/PathLength);
   
   %% Calculate the cost associated with turning \in [0,1] 
   for ii=2:Dimension+1
       %Theta=d(ii,:)*d(ii-1,:)'/(d(ii,:)*d(ii,:)'^0.5)*((d(ii,:)*d(ii,:)'^0.5));
       turning(ii-1)=dot(d(ii,:),d(ii-1,:))/(norm(d(ii,:))*norm(d(ii-1,:)));
   end
   CTurning=(1-mean(turning))/2;  
   
    %% Calculate the cost associated with the threats \in [0,1] 
    if  ~isempty (Threat) 
       [n, ~]=size(Threat);  % n: the number of Threats 
       dThreat=pdist2(Path, Threat(:,1:2)); %dd(i,j) is the distance between i (D+2) point and j Threat
       dDanger=0;
       for j=1:n  % for each Threat
           for k=2:Dimension+2  % for each point. Note: the start point is collision free
              x1=Path(k-1,1); y1=Path(k-1,2);
              x2=Path(k,1); y2=Path(k,2);
              x3=Threat(j,1);y3=Threat(j,2);r=Threat(j,3);
              A=(x2-x1)^2+(y2-y1)^2; %A>0
              B=2*((x2-x1)*(x1-x3)+(y2-y1)*(y1-y3));
              C=x3^2+y3^2+x1^2+y1^2-2*(x3*x1+y3*y1)-r^2;
              delta=B^2-4*A*C;

              if delta<=0 %&& dThreat(k,j)>=Threat(j,3)
                  % do nothing, no intersection
              else
                  mu1=(-B+delta^0.5)/(2*A); mu2=(-B-delta^0.5)/(2*A); % mu2<mu1
                  x_int1=x1+mu1*(x2-x1); y_int1= y1+mu1*(y2-y1);   % the point of intersection
                  x_int2=x1+mu2*(x2-x1); y_int2= y1+mu2*(y2-y1);
                  if dThreat(k,j)>=Threat(j,3) % x2 the point is outside the Threat
                     if dThreat(k-1,j)>=Threat(j,3)
                         if (mu1<1 && mu1>0 ) && (mu2<1 && mu2>0)
                         d=((x_int1-x_int2)^2+(y_int1-y_int2)^2)^0.5;
                         dDanger=dDanger+d;
                         else
                             % do nothing
                         end
                     else
                         d=((x1-x_int1)^2+(y1-y_int1)^2)^0.5;
                         dDanger=dDanger+d;
                     end
                  else
                     if dThreat(k-1,j)>=Threat(j,3)
                         d=((x2-x_int2)^2+(y2-y_int2)^2)^0.5;
                         dDanger=dDanger+d;
                     else
                         d=A^0.5;
                         dDanger=dDanger+d;
                     end
                  end

              end

           end
       end
       if dDanger>0
           CDanger=dDanger/PathLength;
       else
           CDanger=0;
       end

       if CDanger>1
           CDanger=1;
       end
    else
        CDanger=0;
    end
   
    %% Another way to calculate the cost associated with the threats \in [0,1]
    if flag_threat==1  
    if ~isempty (Threat)
       [m, ~]=size(Threat);  % m: the number of threats 
       dThreat=pdist2(Path, Threat(:,1:2)); % dThreat(i,j) is the distance between i (D+2) point and j threat

       for j=1:m  % for each threat
           for k=2:Dimension+2  % for each point/line segment
              if dThreat(k,j)<=Threat(j,3) 
                   if dThreat(k-1,j)<=Threat(j,3)  % the segment is in the circle
                       TS(k)=norm(Path(k,:)-Path(k-1,:));
                   else                            % intersect 
                       x1=Path(k-1,1); y1=Path(k-1,2);
                       x2=Path(k,1); y2=Path(k,2);
                       x3=Threat(j,1);y3=Threat(j,2);r=Threat(j,3);
                       A=(x2-x1)^2+(y2-y1)^2;
                       B=2*((x2-x1)*(x1-x3)+(y2-y1)*(y1-y3));
                       C=x3^2+y3^2+x1^2+y1^2-2*(x3*x1+y3*y1)-r^2;
                       delta=B^2-4*A*C;
                       mu1=(-B+delta^0.5)/(2*A); mu2=(-B-delta^0.5)/(2*A);
                       if  0<=mu1&& mu1<=1
                           TS(k)=norm(Path(k,:)-Path(k-1,:))*(1-mu1);
                       else
                           if  0<=mu2 && mu2<=1
                               TS(k)=norm(Path(k,:)-Path(k-1,:))*(1-mu2);
                           else
                               TS(k)=0;
                           end
                       end

                   end
              else 
                  if dThreat(k-1,j)<=Threat(j,3)   % intersect
                      x1=Path(k-1,1); y1=Path(k-1,2);
                      x2=Path(k,1); y2=Path(k,2);
                      x3=Threat(j,1);y3=Threat(j,2);r=Threat(j,3);
                      A=(x2-x1)^2+(y2-y1)^2;
                      B=2*((x2-x1)*(x1-x3)+(y2-y1)*(y1-y3));
                      C=x3^2+y3^2+x1^2+y1^2-2*(x3*x1+y3*y1)-r^2;
                      delta=B^2-4*A*C;
                      mu1=(-B+delta^0.5)/(2*A); mu2=(-B-delta^0.5)/(2*A);
                      if  0<=mu1&& mu1<=1
                           TS(k)=norm(Path(k,:)-Path(k-1,:))*mu1;
                       else
                           if  0<=mu2 && mu2<=1
                               TS(k)=norm(Path(k,:)-Path(k-1,:))*mu2;
                           else
                               TS(k)=0;
                           end
                       end
                  else
                      x1=Path(k-1,1); y1=Path(k-1,2);
                      x2=Path(k,1); y2=Path(k,2);
                      x3=Threat(j,1);y3=Threat(j,2);r=Threat(j,3);
                      A=(x2-x1)^2+(y2-y1)^2;
                      B=2*((x2-x1)*(x1-x3)+(y2-y1)*(y1-y3));
                      C=x3^2+y3^2+x1^2+y1^2-2*(x3*x1+y3*y1)-r^2;
                      delta=B^2-4*A*C;
                      if delta<=0      % no intersection
                          TS(k)=0;
                      else             % two intersections 
                          mu1=(-B+delta^0.5)/(2*A); mu2=(-B-delta^0.5)/(2*A);
                         TS(k)=norm(Path(k,:)-Path(k-1,:))*(mu1-mu2);
                      end
                  end
              end
           end
       end
       CDanger=sum(TS)/sum(Threat(:,3));
       if CDanger>1
           CDanger=1;
       end
    else
        CDanger=0;
    end
    end
   

   %% Calculate the cost associated with the collision with obstacles \in [p,p+1]
   [n, ~]=size(Obstacle);  % n: the number of obstacles 
   dObstacle=pdist2(Path, Obstacle(:,1:2)); %dd(i,j) is the distance between i (D+2) point and j obstacle
   dCollision=0;
   for j=1:n  % for each obstacle
       for k=2:Dimension+2  % for each point. Note: the start point is collision free
          %if dObstacle(k,j)<Obstacle(j,3)
          %     Collision=Collision+1;
          %else 
          x1=Path(k-1,1); y1=Path(k-1,2);
          x2=Path(k,1); y2=Path(k,2);
          x3=Obstacle(j,1);y3=Obstacle(j,2);r=Obstacle(j,3);
          A=(x2-x1)^2+(y2-y1)^2; %A>0
          B=2*((x2-x1)*(x1-x3)+(y2-y1)*(y1-y3));
          C=x3^2+y3^2+x1^2+y1^2-2*(x3*x1+y3*y1)-r^2;
          delta=B^2-4*A*C;
          
          if delta<=0 %&& dObstacle(k,j)>=Obstacle(j,3)
              % do nothing, no intersection
          else
              mu1=(-B+delta^0.5)/(2*A); mu2=(-B-delta^0.5)/(2*A); % mu2<mu1
              x_int1=x1+mu1*(x2-x1); y_int1= y1+mu1*(y2-y1);   % the point of intersection
              x_int2=x1+mu2*(x2-x1); y_int2= y1+mu2*(y2-y1);
              if dObstacle(k,j)>=Obstacle(j,3) % x2 the point is outside the obstacle
                 if dObstacle(k-1,j)>=Obstacle(j,3)
                     if (mu1<1 && mu1>0 ) && (mu2<1 && mu2>0)
                     d=((x_int1-x_int2)^2+(y_int1-y_int2)^2)^0.5;
                     dCollision=dCollision+d;
                     else
                         % do nothing
                     end
                 else
                     d=((x1-x_int1)^2+(y1-y_int1)^2)^0.5;
                     dCollision=dCollision+d;
                 end
              else
                 if dObstacle(k-1,j)>=Obstacle(j,3)
                     d=((x2-x_int2)^2+(y2-y_int2)^2)^0.5;
                     dCollision=dCollision+d;
                 else
                     d=A^0.5;
                     dCollision=dCollision+d;
                 end
              end    
          end
       end
   end
   if dCollision>0
       CCollision=Penalty*(1+dCollision); %/PathLength; !!!!
   else
       CCollision=0;
   end
   
    
   %% Calculate the cost associated with the fuel represented by fly length \in [p,p+1]
   if PathLength<=MaximumLength
       CFuel=0;
   else
       CFuel=Penalty+(PathLength-MaximumLength)/MaximumLength;
   end
   
   FitValue(i)=CLength+CDanger+CTurning+ CCollision+CFuel;
   
end

end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Jing Liu, Sreenatha Anavatti, Matthew Garratt, Hussein A. Abbass (2022) Modified Continuous Ant Colony Optimisation for Multiple Unmanned Ground Vehicle Path Planning

[2]霍志会. 基于强化学习的UGV在复杂环境下的路径探索关键技术研究[D].浙江科技学院,2022.DOI:10.27840/d.cnki.gzjkj.2022.000299.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值