量化交易之数学与统计学基础2.4——线性代数与矩阵运算 | 矩阵分解
第二部分:线性代数与矩阵运算
第4节:矩阵分解:奇异值分解(SVD)在数据压缩和风险分解的应用
一、奇异值分解(SVD)基础:矩阵的“积木分解”
奇异值分解是一种强大的矩阵分解方法,它可以将任意矩阵分解为三个矩阵的乘积,为数据处理和分析提供了有力的工具。
1. 数学定义
对于一个
m
×
n
m\times n
m×n 的矩阵
A
\mathbf{A}
A,其奇异值分解可以表示为:
A
=
U
Σ
V
T
\mathbf{A}=\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T
A=UΣVT
其中,
U
\mathbf{U}
U 是
m
×
m
m\times m
m×m 的正交矩阵(
U
T
U
=
I
m
\mathbf{U}^T\mathbf{U}=\mathbf{I}_m
UTU=Im),其列向量称为左奇异向量;
Σ
\mathbf{\Sigma}
Σ 是
m
×
n
m\times n
m×n 的对角矩阵,对角线上的元素
σ
1
≥
σ
2
≥
⋯
≥
σ
r
>
0
\sigma_1\geq\sigma_2\geq\cdots\geq\sigma_r>0
σ1≥σ2≥⋯≥σr>0 称为奇异值,
r
=
rank
(
A
)
r = \text{rank}(\mathbf{A})
r=rank(A);
V
\mathbf{V}
V 是
n
×
n
n\times n
n×n 的正交矩阵(
V
T
V
=
I
n
\mathbf{V}^T\mathbf{V}=\mathbf{I}_n
VTV=In),其列向量称为右奇异向量。
2. 求解方法
通常可以通过计算 A T A \mathbf{A}^T\mathbf{A} ATA 的特征值和特征向量来得到 V \mathbf{V} V 和 Σ \mathbf{\Sigma} Σ,然后通过 A V = U Σ \mathbf{A}\mathbf{V}=\mathbf{U}\mathbf{\Sigma} AV=UΣ 计算 U \mathbf{U} U。在实际应用中,可以使用数值计算库(如 NumPy)来高效地完成 SVD 分解。
二、数据压缩:用 SVD 减少数据存储与计算成本
在量化交易中,我们经常需要处理大规模的数据矩阵,如历史价格数据、因子暴露矩阵等。SVD 可以帮助我们对这些数据进行压缩,减少存储和计算成本。
1. 低秩近似
矩阵
A
\mathbf{A}
A 的 SVD 分解中,奇异值
σ
i
\sigma_i
σi 反映了矩阵的重要信息。通常,大部分重要信息集中在前面几个较大的奇异值上。因此,我们可以只保留前
k
k
k 个奇异值(
k
<
r
k < r
k<r),得到矩阵
A
\mathbf{A}
A 的低秩近似:
A
k
=
U
k
Σ
k
V
k
T
\mathbf{A}_k=\mathbf{U}_k\mathbf{\Sigma}_k\mathbf{V}_k^T
Ak=UkΣkVkT
其中,
U
k
\mathbf{U}_k
Uk 是
U
\mathbf{U}
U 的前
k
k
k 列,
Σ
k
\mathbf{\Sigma}_k
Σk 是
Σ
\mathbf{\Sigma}
Σ 的前
k
k
k 个奇异值构成的
k
×
k
k\times k
k×k 对角矩阵,
V
k
\mathbf{V}_k
Vk 是
V
\mathbf{V}
V 的前
k
k
k 列。
2. 量化应用
- 历史数据存储:对于历史价格数据矩阵,通过 SVD 压缩可以减少存储空间,同时保留大部分重要信息。
- 因子数据处理:在多因子模型中,对因子暴露矩阵进行 SVD 压缩,可以减少因子数量,提高计算效率。
三、风险分解:用 SVD 剖析投资组合的风险来源
在投资组合管理中,了解投资组合的风险来源至关重要。SVD 可以帮助我们将投资组合的风险分解为不同的风险因子。
1. 风险矩阵分解
假设投资组合的协方差矩阵为
Σ
\mathbf{\Sigma}
Σ,对其进行 SVD 分解:
Σ
=
U
Λ
U
T
\mathbf{\Sigma}=\mathbf{U}\mathbf{\Lambda}\mathbf{U}^T
Σ=UΛUT
其中,
Λ
\mathbf{\Lambda}
Λ 是对角矩阵,对角线上的元素是
Σ
\mathbf{\Sigma}
Σ 的特征值,
U
\mathbf{U}
U 是特征向量矩阵。每个特征值对应一个风险因子,特征向量表示投资组合在该风险因子上的暴露。
2. 风险贡献分析
通过 SVD 分解,我们可以计算每个风险因子对投资组合总风险的贡献。例如,第
i
i
i 个风险因子的风险贡献可以表示为:
R
C
i
=
w
T
U
i
λ
i
U
i
T
w
RC_i = w^T\mathbf{U}_i\lambda_i\mathbf{U}_i^Tw
RCi=wTUiλiUiTw
其中,
w
w
w 是投资组合的权重向量,
U
i
\mathbf{U}_i
Ui 是第
i
i
i 个特征向量,
λ
i
\lambda_i
λi 是第
i
i
i 个特征值。
四、投资组合优化:用 SVD 寻找最优投资组合
投资组合优化的目标是在给定的风险水平下最大化投资组合的收益,或者在给定的收益水平下最小化投资组合的风险。SVD 可以帮助我们在优化过程中处理高维的协方差矩阵。
1. 优化问题
经典的马科维茨投资组合优化问题可以表示为:
min
w
w
T
Σ
w
s.t.
w
T
μ
=
r
p
,
w
T
1
=
1
\min_{w} w^T\mathbf{\Sigma}w\quad\text{s.t.}\quad w^T\mathbf{\mu}=r_p,\quad w^T\mathbf{1}=1
wminwTΣws.t.wTμ=rp,wT1=1
其中,
w
w
w 是投资组合的权重向量,
Σ
\mathbf{\Sigma}
Σ 是协方差矩阵,
μ
\mathbf{\mu}
μ 是预期收益率向量,
r
p
r_p
rp 是目标收益率。
2. SVD 辅助优化
通过对协方差矩阵 Σ \mathbf{\Sigma} Σ 进行 SVD 分解,可以将优化问题转化为低维空间中的问题,减少计算复杂度。同时,SVD 可以帮助我们处理协方差矩阵的病态问题,提高优化结果的稳定性。
五、Python 实践:用 SVD 进行数据压缩和风险分解
import numpy as np
import matplotlib.pyplot as plt
# 生成模拟数据矩阵(100 行,20 列)
np.random.seed(42)
A = np.random.randn(100, 20)
# 1. SVD 分解
U, Sigma, Vt = np.linalg.svd(A)
# 2. 数据压缩:保留前 5 个奇异值
k = 5
U_k = U[:, :k]
Sigma_k = np.diag(Sigma[:k])
Vt_k = Vt[:k, :]
A_k = U_k @ Sigma_k @ Vt_k
# 3. 可视化原始矩阵和压缩后的矩阵
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.imshow(A, cmap='hot', interpolation='nearest')
plt.title('原始矩阵')
plt.subplot(1, 2, 2)
plt.imshow(A_k, cmap='hot', interpolation='nearest')
plt.title(f'压缩后的矩阵(保留 {k} 个奇异值)')
plt.show()
# 4. 风险分解:假设 A 是协方差矩阵
eigenvalues = Sigma**2
total_risk = np.sum(eigenvalues)
risk_contributions = eigenvalues / total_risk
# 可视化风险贡献
plt.figure(figsize=(8, 5))
plt.bar(np.arange(len(risk_contributions)), risk_contributions)
plt.xlabel('风险因子')
plt.ylabel('风险贡献')
plt.title('风险因子的风险贡献')
plt.show()
本节总结
- 奇异值分解是一种强大的矩阵分解方法,可以将任意矩阵分解为三个矩阵的乘积。
- 在数据压缩方面,SVD 可以通过低秩近似减少数据存储和计算成本。
- 在风险分解和投资组合优化中,SVD 可以帮助我们剖析投资组合的风险来源,处理高维协方差矩阵,提高优化结果的稳定性。