背包问题之完全背包

完全背包问题

有 N 件物品和一个容量是 V 的背包。每件物品数量无限。

第 i 件物品的体积是 v[i] ,价值是 w[i]。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
思路和01背包几乎一致,代码如下:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int v[N],w[N];
int f[N][N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            for(int k=0;k*v[i]<=j;k++){
                f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
            }
        }
    }
    cout<<f[n][m];
    return 0;
}
此处状态转移方程是依据集合划分得出的,在01背包中,依据第i个物品拿与不拿f(i,j)划分为两个子集f(i-1,j-v[i])+w[i]f(i-1,j)
而在完全背包中,物品数量不限,按01背包的思路思考下去,是否可以依据第i个物品拿0,1,2,...,k-1,k次,将f(i,j)划分为f(i-1,j)f(i-1,j-v[i])+w[i]f(i-1,j-2*v[i])+2*w[i],…,f(i-1,j-k*v[i])+K*w[i],当然对于人类来说还是无法穷极,但对于计算机却可以通过for循环穷举,只是时间复杂度过高了。
之前提到过,背包问题的优化更多的是想办法降低空间复杂度,看看能不能去掉一些维度,减少开辟数组的开销。但很多时候也需要通过恒等变换看看能不能减少循环嵌套的次数。比如完全背包f(i,j)展开式的后面一部分f(i-1,j-v[i])+w[i]f(i-1,j-2*v[i])+2*w[i],…,f(i-1,j-k*v[i])+K*w[i],和f(i,j-v[i])的展开式f(i-1,j-v[i]),f(i-1,j-2*v[i]+w[i],f(i-1,(k-1)*v[i])+(k-1)*w[i]几乎一样,就相差一个w[i]
也就是说,f(i,j-v[i])+w[i]恒等于f(i,j)展开式的后面一部分,即有f(i,j)=max(f(i-1,j),f(i,j-v[i])+w[i]),直接通过一个恒等变换将后面本来需要穷举1~k次进行比较的步骤去除了,因为后面所有穷举的可能的最大值就是f(i,j-v[i])+w[i])

关键来了:将集合划分为0,1,2,3,...,k-1,k种情况是不是等价于将集合划分为——一个不选至少选一个,也就是f(i-1,j)f(i,j-v[i])+w[i]。注意这里是i而不是i-1意味着还能再选i这个物品。

不论是集合划分还是直接数学直觉发现后面的式子可以统一为一个表达式本质上都是一样的,要找到共同的特点,看看能否进行恒等变换转换为更加简洁的式子,复杂度自然就下来了。

在这里插入图片描述

#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int v[N],w[N];
int f[N][N];
int n,m;
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            f[i][j]=f[i-1][j];
            if(v[i]<=j) f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
        }
    }
    cout<<f[n][m];
    return 0;
}
甚至,看着这神似01背包的代码,不难发现,每次更新都只会用到上一层自己当前的位置当前层的左侧位置(也就是已经被更新的位置)由于都在当前位置一侧所以我们仍然能采用滚动数组的思路,只不过与01背包的从右向左更新不同,我们只能从左向右更新,因为表达式f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i])要的就是更新后的值。
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
int v[N],w[N];
int n,m;
int f[N];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>v[i]>>w[i];
    for(int i=1;i<=n;i++){
        for(int j=v[i];j<=m;j++){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    }
    cout<<f[m];
    return 0;
}
这也是一种恒等变换直接在表达式上删删看,发现删去一维后,等式表达的含义不变。当然背后是滚动数组的思想。但写的时候别想这么多,不要深思,容易陷进牛角尖,耽误写后面的题目。
  • 25
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值