ST表(模板讲解,在线修改)

前言

本文并非st表零基础教程,不适合对ST表没有基础的人阅读。

定义

利用倍增思想,求解静态RMQ(区间最值查询)的算法

利用O(nlog2n)复杂度预处理,进行O(1)的查询

倍增思想: 2的i次增长

模板

先谈一下为什么开log2啊? 如果不开,你长度都是2,4,6这样访问,不浪费空间吗?N*N稍微大点直接爆内存了

而且你初始化个数组查某个数的最大2的次数, 这样和log2比不方便,何况懒得写log2还有自带的函数.

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+5;
int st[N][31]; //st[i][j],i记录的是现在遍历的下标,j记录的是log2(长度)
int lg[N]; //因为二进制就是2的i次,所以用来记录很方便,位移就可以了.
int n,m;

void init(){
	lg[0] = -1;
	for(int i = 1; i <= n; i++){
		lg[i] = lg[i>>1] + 1;
	} 
	for(int j = 1; j <= lg[n]; j++){ //长度 
		for(int i = 1; i <= n - (1<<(j-1)); i++){ //起点 
			//比如1-4是由1-2和3-4得来,即st[1][2] = max(st[1][1], st[3][1]); 
			st[i][j] = max(st[i][j-1], st[i + (1<<(j-1))][j-1]);
		}
	}
}
int query(int l, int r){
	int len = lg[r - l + 1];
	//lr不一定正好是一个区间,可能由两个区间组成
	//如果正好是一个区间的话r - (1<<len) + 1 == l是成立的
	//如果不是一个区间,他们两一个表示前一个区间,一个是后一个区间
	//比如l=1,r=8的话 st[1][3] = max(st[1][3], st[8-8+1][3]);
	//比如l=3,r=8的话, st[3][2] = max(st[3][2], st[8-4+1][2]);即3-6和5-8,有交集也无所谓的 
	return max(st[l][len], st[r - (1<<len) + 1][len]);
}

int main(){
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	cin>>n>>m;
	for(int i = 1; i <= n; i++){
		cin>>st[i][0];
	}
    init();
	for(int i = 1; i <= m; i++){
		int l,r;
		cin>>l>>r;
		cout<<query(l,r)<<endl;
	}
	return 0;
}

在线问题

st表虽然是离线修改,但有一类在线问题它也可以解决

题目

每次插入数据都是尾部插入,其实每次插入我们并不需要重建整个st表,st表只有一部分内容受到了影响,哪一部分呢?

记添加后数组长度为n, 即以n结尾的部分受到影响,我们只要重建这些部分,时间复杂度是logn(因为起点倍增过去那么多,自己想),当然这里st表定义改了一下,st[i] [j]不是i到i + 2j-1而是i到 i - 2j-1

#include<bits/stdc++.h>
#define endl '\n'
using namespace std;
typedef long long ll;
int st[200001][63];
int lg[200001];
int m, mod, n;

void init(){
	lg[0] = -1;
	for(int i = 1; i <= m; i++){
		lg[i] = lg[i>>1] + 1;
	} 
}
ll query(int l, int r){
	int len = lg[r - l + 1];
	return max(st[r][len], st[l + (1<<len)-1][len]);
}

void add(ll val){
	st[++n][0] = val;
	for(int i = 1; n - (1<<i) >= 0; i++){ //枚举长度,找起点 
		st[n][i] = max(st[n][i-1], st[n - (1<<(i-1))][i-1]);
	}
}

int main(){
	ios::sync_with_stdio(0);
	cin.tie(0), cout.tie(0);
	cin>>m>>mod;
	ll t = 0;
	init(); 
	for(int i = 1; i <= m; i++){
		char jud;
		ll k;
		cin>>jud>>k;
		if(jud == 'A'){ //插入 
			add((k+t) % mod); //k作为加数 
		}else{ //k作为要求的长度 
			t = query(n - k + 1, n);
			cout<<t<<endl;
		}
	}
	return 0;
}
ST是一种用于快速查询区间最值的数据结构。它的核心思想是对区间进行预处理,将区间内的最值信息存储在一个二维数组中,然后利用这个数组进行查询。以下是一个求最大值的ST模板代码: ``` const int MAXN = 100005; const int MAXLOGN = 20; int a[MAXN]; int st[MAXN][MAXLOGN]; void init(int n) { for (int i = 1; i <= n; i++) { st[i][0] = a[i]; } for (int j = 1; (1 << j) <= n; j++) { for (int i = 1; i + (1 << j) - 1 <= n; i++) { st[i][j] = max(st[i][j-1], st[i+(1<<(j-1))][j-1]); } } } int query(int l, int r) { int k = log2(r-l+1); // k为最大的2的幂次方,使得2^k <= r-l+1 return max(st[l][k], st[r-(1<<k)+1][k]); } int main() { int n, q; cin >> n >> q; for (int i = 1; i <= n; i++) { cin >> a[i]; } init(n); while (q--) { int l, r; cin >> l >> r; cout << query(l, r) << endl; } return 0; } ``` 这段代码中,init函数用于初始化ST,query函数用于查询区间最大值。具体来说,init函数的实现如下: 1. 将a[i]的值存储到st[i][0]中,示区间[i,i]的最大值为a[i]。 2. 对于每个j,计算区间[i,i+2^j-1]的最大值,存储在st[i][j]中。可以发现,区间[i,i+2^j-1]可以拆分为两个长度为2^(j-1)的子区间,即区间[i,i+2^(j-1)-1]和区间[i+2^(j-1),i+2^j-1]。因此,区间[i,i+2^j-1]的最大值等于区间[i,i+2^(j-1)-1]的最大值和区间[i+2^(j-1),i+2^j-1]的最大值中较大的一个。 query函数的实现也比较简单,首先计算k,然后查询区间[l,r]的最大值,等价于查询区间[l,l+2^k-1]的最大值和区间[r-2^k+1,r]的最大值中较大的一个。 求最小值的ST模板代码与求最大值的类似,只需要将max改为min即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值