Scikit-Learn (sklearn) 基础教程

Scikit-Learn(简称 sklearn)是 Python 生态系统中用于机器学习的开源库之一。它提供了简单而高效的工具,用于数据挖掘和数据分析,构建在 NumPy、SciPy 和 matplotlib 之上。sklearn 支持监督学习和无监督学习,并提供了各种数据集用于测试和实验。本文将详细介绍 sklearn 的基础知识,包括其安装、常用模块、数据预处理、模型训练和评估等。

一、安装 Scikit-Learn

在开始使用 sklearn 之前,需要确保已安装该库。可以使用以下命令通过 pip 安装:

pip install scikit-learn

安装完成后,可以通过以下命令检查安装是否成功:

import sklearn
print(sklearn.__version__)

如果能够输出版本号,说明安装成功。

二、Scikit-Learn 的基本模块

Scikit-Learn 包含许多模块,常用的有以下几个:

  • sklearn.datasets:提供常用数据集。
  • sklearn.preprocessing:数据预处理模块。
  • sklearn.model_selection:模型选择和评估模块。
  • sklearn.linear_model:线性模型模块。
  • sklearn.svm:支持向量机模块。
  • sklearn.tree:决策树模块。
  • sklearn.ensemble:集成方法模块,如随机森林和梯度提升。
  • sklearn.metrics:性能度量模块。

接下来,我们将详细介绍这些模块的使用方法。

三、加载和准备数据

1. 使用内置数据集

Sklearn 提供了一些常用的内置数据集,如鸢尾花数据集、波士顿房价数据集等。可以通过以下方式加载数据集:

from sklearn.datasets import load_iris
data = load_iris()
print(data.keys())

2. 数据分割

在机器学习中,通常需要将数据集分为训练集和测试集,以评估模型的性能。可以使用 train_test_split 函数进行数据分割:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)

四、数据预处理

在训练模型之前,通常需要对数据进行预处理,包括标准化、归一化、缺失值处理等。Sklearn 提供了 preprocessing 模块来完成这些任务。

1. 标准化

标准化是指将特征值转换为均值为0,标准差为1的分布。可以使用 StandardScaler 进行标准化:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

2. 归一化

归一化是指将特征值缩放到一定范围(通常是 [0, 1])。可以使用 MinMaxScaler 进行归一化:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

五、模型训练与评估

1. 训练模型

Sklearn 提供了多种机器学习算法,可以通过简单的接口进行模型训练。例如,使用线性回归模型:

from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(X_train, y_train)

2. 模型预测

训练完成后,可以使用模型进行预测:

y_pred = model.predict(X_test)

3. 模型评估

Sklearn 提供了多种评估指标,用于衡量模型的性能。例如,使用均方误差(MSE)评估回归模型:

from sklearn.metrics import mean_squared_error

mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)

对于分类问题,可以使用准确率(accuracy)、精确率(precision)、召回率(recall)等指标进行评估:

from sklearn.metrics import accuracy_score, precision_score, recall_score

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='macro')
recall = recall_score(y_test, y_pred, average='macro')

print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)

六、超参数调优

在机器学习中,选择合适的超参数对于模型性能至关重要。Sklearn 提供了 GridSearchCVRandomizedSearchCV 等工具来自动化超参数调优过程。

1. 网格搜索

GridSearchCV 通过穷举搜索找到最佳超参数组合:

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
grid_search = GridSearchCV(SVC(), param_grid, cv=5)
grid_search.fit(X_train, y_train)

print("Best Parameters:", grid_search.best_params_)

2. 随机搜索

RandomizedSearchCV 通过随机搜索找到最佳超参数组合,通常在搜索空间较大时使用:

from sklearn.model_selection import RandomizedSearchCV

param_distributions = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
random_search = RandomizedSearchCV(SVC(), param_distributions, n_iter=10, cv=5, random_state=42)
random_search.fit(X_train, y_train)

print("Best Parameters:", random_search.best_params_)

七、模型持久化

在训练好模型后,可以将其保存以便后续使用。Sklearn 提供了 joblib 工具进行模型持久化。

1. 保存模型

import joblib

joblib.dump(model, 'model.pkl')

2. 加载模型

model = joblib.load('model.pkl')

八、实例:鸢尾花分类

综合以上内容,我们通过一个简单的鸢尾花分类实例来展示 sklearn 的完整工作流程。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据预处理
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 模型训练
model = SVC(C=1.0, kernel='linear')
model.fit(X_train, y_train)

# 模型预测
y_pred = model.predict(X_test)

# 模型评估
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

九、总结

Scikit-Learn 是一个功能强大且易于使用的机器学习库,涵盖了从数据加载、预处理、模型训练到评估的完整工作流程。通过本文的介绍,相信读者对 sklearn 有了初步的了解,并掌握了其基本用法。建议读者在实践中多加练习,深入理解每个模块的功能和应用场景,从而更好地利用 sklearn 进行机器学习任务。

  • 22
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Sklearn是一个常用的Python机器学习库,提供了丰富的算法和工具,用于数据预处理、特征选择、模型训练和评估等任务。下面以分类算法为例,简要介绍一下sklearn基础代码。 首先,我们需要导入所需的模块。一般情况下,我们会导入`numpy`用于数据处理,`sklearn`的`datasets`模块用于获取示例数据集,以及选择要使用的分类模型。 接下来,我们可以使用`datasets`模块提供的数据集,例如`load_iris()`来加载一个经典的鸢尾花数据集。然后,我们可以将数据集分为特征矩阵`X`和目标向量`y`,通过`data`和`target`属性来获取。 接着,我们可以进行数据预处理的步骤,例如将特征矩阵进行标准化。这可以通过使用`sklearn`的`preprocessing`模块中的`StandardScaler`类来实现。首先,我们需要对数据集进行拟合,然后通过`transform()`方法对数据进行转换。 接下来,我们选择一个合适的分类算法,例如使用`sklearn`的`neighbors`模块中的`KNeighborsClassifier`类。我们可以实例化一个分类器对象,并将其拟合到我们的数据集,通过调用`fit()`方法,并传入特征矩阵和目标向量。 然后,我们可以使用训练好的模型进行预测。我们可以通过调用分类器对象的`predict()`方法,并传入要预测的特征矩阵来获取预测结果。 最后,我们可以对我们的模型进行评估。例如,我们可以使用`metrics`模块中的`accuracy_score`函数计算准确率,并将预测结果和真实结果作为参数传入。 综上所述,以上是使用sklearn进行基本分类任务的代码示例。当然,实际应用中,还有许多更复杂的操作和调整参数的方法,可以根据具体需求进行学习和使用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值