数据预处理:归一化和标准化skerlean

        本blog内容有特征预处理(标准化、归一化、正则化、特征二值化、缺失值处理)和标签label预处理(label二值化、multi-label多值化)。

特征的预处理

基础知识参考

[数据标准化/归一化normalization ]

[均值、方差与协方差矩阵 ]

[矩阵论:向量范数和矩阵范数 ]

Note: 一定要注意归一化是归一化什么,归一化features还是samples。

数据标准化:去除均值和方差进行缩放

Standardization: mean removal and variance scaling

        数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差。实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化。

Note: test set要和training set做相同的预处理操作(standardization、data transformation、etc)。
[数据标准化/归一化normalization ]

scale函数标准化

from sklearn import preprocessing

preprocessing.scale(X)

def scale(X, axis=0, with_mean=True, with_std=True, copy=True)
 
 

        注意,scikit-learn中assume that all features are centered around zero and have variance in the same order.同时这个默认操作是对features进行的(如mean removal),所以操作都是针对axis=0的操作,如果数据不是这样的要注意!公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行。

参数解释:
    X:{array-like, sparse matrix} 数组或者矩阵,一维的数据都可以(但是在0.19版本后一维的数据会报错了!)
    axis:int类型,初始值为0,axis用来计算均值 means 和标准方差 standard deviations. 如果是0,则单独的标准化每个特征(列),如果是1,则标准化每个观测样本(行)。
    with_mean: boolean类型,默认为True,表示将数据均值规范到0
    with_std: boolean类型,默认为True,表示将数据方差规范到1

这种标准化相当于z-score 标准化(zero-mean normalization)

[sklearn.preprocessing.scale]

scale标准化示例


 
 
  1. >>> from sklearn import preprocessing
  2. >>> import numpy as np
  3. >>> X = np.array([[ 1., -1., 2.],
  4. ... [ 2., 0., 0.],
  5. ... [ 0., 1., -1.]])
  6. >>> X_scaled = preprocessing.scale(X)
  7. >>> X_scaled
  8. array([[ 0. ..., -1.22..., 1.33...],
  9. [ 1.22..., 0. ..., -0.26...],
  10. [-1.22..., 1.22..., -1.06...]])

对于一维数据的一种可能的处理:先转换成二维,再在结果中转换为一维

cn = preprocessing.scale([[p] for _, _, p in cn]).reshape(-1)
 
 

转换后的数据有0均值(zero mean)和单位方差(unit variance,方差为1)


 
 
  1. >>> X_scaled.mean(axis=0)
  2. array([ 0., 0., 0.])
  3. >>> X_scaled.std(axis=0)
  4. array([ 1., 1., 1.])

使用StandardScaler使标准化应用在测试集上:保存标准化参数

        一般我们的标准化先在训练集上进行,在测试集上也应该做同样mean和variance的标准化,这样就应该将训练集上的标准化参数保存下来。

        The preprocessing module further provides a utility class StandardScaler that implements the Transformer API to computethe mean and standard deviation on a training set so as to beable to later reapply the same transformation on the testing set.This class is hence suitable for use in the early steps of a sklearn.pipeline.Pipeline:


 
 
  1. >>> scaler = preprocessing.StandardScaler().fit(X)
  2. >>> scaler
  3. StandardScaler(copy=True, with_mean=True, with_std=True)
  4. >>> scaler.mean_
  5. array([ 1. ..., 0. ..., 0.33...])
  6. >>> scaler.scale_
  7. array([ 0.81..., 0.81..., 1.24...])
  8. >>> scaler.transform(X)
  9. array([[ 0. ..., -1.22..., 1.33...],
  10. [ 1.22..., 0. ..., -0.26...],
  11. [-1.22..., 1.22..., -1.06...]])

The scaler instance can then be used on new data to transform it thesame way it did on the training set:


 
 
  1. >>> scaler.transform([[-1., 1., 0.]])
  2. array([[-2.44..., 1.22..., -0.26...]])

It is possible to disable either centering or scaling by eitherpassing with_mean=False or with_std=False to the constructorof StandardScaler.[StandardScaler]

[Standardization, or mean removal and variance scaling]

StandardScaler示例


 
 
  1. def preprocess():
  2. if not os.path.exists(os.path.join(DIR, train_file1)) or not os.path.exists(os.path.join(DIR, test_file1)) or 0:
  3. xy = np.loadtxt(os.path.join(DIR, train_file), delimiter=',', dtype=float)
  4. x, y = xy[:, 0:-1], xy[:, -1]
  5. scaler = preprocessing.StandardScaler().fit(x)
  6. xy = np.hstack([scaler.transform(x), y])
  7. np.savetxt(os.path.join(DIR, train_file1), xy, fmt='%.7f')
  8. x_test = np.loadtxt(os.path.join(DIR, test_file), delimiter=',', dtype=float)
  9. x_test = scaler.transform(x_test)
  10. np.savetxt(os.path.join(DIR, test_file1), x_test, fmt='%.7f')
  11. else:
  12. print('data loading...')
  13. xy = np.loadtxt(os.path.join(DIR, train_file1), dtype=float)
  14. x_test = np.loadtxt(os.path.join(DIR, test_file1), dtype=float)
  15. return xy[:, 0:-1], xy[:, -1], x_test

Note:

pipeline能简化该过程( See  Pipeline and FeatureUnion: combining estimators ,翻译后的文章:http://www.voidcn.com/blog/mmc2015/article/p-3379231.html):


 
 
  1. >>> from sklearn.pipeline import make_pipeline
  2. >>> clf = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1))
  3. >>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=cv)
  4. ...
  5. array([ 0.97..., 0.93..., 0.95...])

MinMaxScaler函数:将特征的取值缩小到一个范围(如0到1)

        将属性缩放到一个指定的最大值和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类来实现。
使用这种方法的目的包括:
    1、对于方差非常小的属性可以增强其稳定性;
    2、维持稀疏矩阵中为0的条目。
min_max_scaler = preprocessing.MinMaxScaler()
X_minMax = min_max_scaler.fit_transform(X)

有大量异常值的归一化

sklearn.preprocessing.robust_scale(X, axis=0, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True)

Center to the median and component wise scaleaccording to the interquartile range.

[Scaling data with outliers]

其它

[Scaling sparse data

Centering kernel matrices]

自定义归一化函数

Constructs a transformer from an arbitrary callable.

lz自定义了一个归一化函数:大于某个THRESHOLD时其属于1的概率值要大于0.5,小于THRESHOLD时概率值小于0.5,接近最大值时其概率值越接近1,接近最小值时其概率值越接近0。相当于min-max归一化的一点改进吧。


 
 
  1. from sklearn.preprocessing import FunctionTransformer
  2. import numpy as np
  3. def scalerFunc(x, maxv, minv, THRESHOLD=200):
  4. '''
  5. :param x: (n_samples, n_features)!!
  6. '''
  7. label = x >= THRESHOLD
  8. result = 0.5 * (1 + (x - THRESHOLD) * (label / (maxv - THRESHOLD) + (label - 1) / (minv - THRESHOLD)))
  9. # print(result)
  10. return result
  11. x = np.array([100, 150, 201, 250, 300]).reshape(-1, 1)
  12. scaler = FunctionTransformer(func=scalerFunc, kw_args={'maxv': x.max(), 'minv': x.min()}).fit(x)
  13. print(scaler.transform(x))
  14. [[ 0.   ] [ 0.25 ] [ 0.505] [ 0.75 ] [ 1.   ]]

Note: 自定义函数的参数由FunctionTransformer中的kw_args指定,是字典类型,key必须是字符串。

[preprocessing.FunctionTransformer([func, ...])]

[sklearn.preprocessing: Preprocessing and Normalization]

正则化Normalization

        正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。
        该方法是文本分类和聚类分析中经常使用的向量空间模型(Vector Space Model)的基础.
Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

        Normalization is the process of scaling individual samples to haveunit norm.This process can be useful if you plan to use a quadratic formsuch as the dot-product or any other kernel to quantify the similarityof any pair of samples.This assumption is the base of the Vector Space Model often used in textclassification and clustering contexts.

def normalize(X, norm='l2', axis=1, copy=True)
 
 

注意,这个操作是对所有样本(而不是features)进行的,也就是将每个样本的值除以这个样本的Li范数。所以这个操作是针对axis=1进行的。

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized                                      
array([[ 0.40..., -0.40...,  0.81...],
       [ 1.  ...,  0.  ...,  0.  ...],
       [ 0.  ...,  0.70..., -0.70...]])

[Normalization]

皮皮blog

缺失值处理Imputation of missing values

        由于不同的原因,许多现实中的数据集都包含有缺失值,要么是空白的,要么使用NaNs或者其它的符号替代。这些数据无法直接使用scikit-learn分类器直接训练,所以需要进行处理。幸运地是,sklearn中的Imputer类提供了一些基本的方法来处理缺失值,如使用均值、中位值或者缺失值所在列中频繁出现的值来替换。
        Imputer类同样支持稀疏矩阵。
>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))                           
[[ 4.          2.        ]
 [ 6.          3.666...]
 [ 7.          6.        ]]

不过lz更倾向于使用pandas进行数据的这种处理[pandas小记:pandas高级功能 ]。

[Imputation of missing values]

其它

[Generating polynomial features]

[Custom transformers]

皮皮blog

 

 

label的预处理

multi-class二值化:Binarization

        Binarize data (set feature values to 0 or 1) according to a threshold. LabelBinarizer is a utility class to help create a label indicator matrix from a list of multi-class labels. 特征的二值化主要是为了将数据特征转变成boolean变量。

        sklearn.preprocessing.Binarizer函数可以设定一个阈值,结果数据值大于阈值的为1,小于阈值的为0。

>>> X = [[ 1., -1.,  2.],
...      [ 2.,  0.,  0.],
...      [ 0.,  1., -1.]]
>>> binarizer = preprocessing.Binarizer().fit(X)  # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)
>>> binarizer.transform(X)
array([[ 1.,  0.,  1.],
       [ 1.,  0.,  0.],
       [ 0.,  1.,  0.]])

[Binarization]

multi-label多值化:MultiLabelBinarizer

Transform between iterable of iterables and a multilabel format

fit字典中所有的字

mlb = MultiLabelBinarizer()
with open(os.path.join(DATADIR, 'vocab.tags.txt'), 'r', encoding='utf-8') as f:
    mlb.fit([[l.strip() for l in f.readlines()]])

类数目

mlb.classes_.size

所有类名的ndarray

mlb.classes_

转换class_names为class_ids

transform(self, y)

y : iterable of iterables. 是一个可迭代对象就可以,当然其中的数据需要是mlb.classes_中的数据。返回一个二维的 (n_samples, n_classes) 的multi-hot表示。

转换class_ids为class_names

inverse_transform(self, yt)

其中参数:yt : array or sparse matrix of shape (n_samples, n_classes) .A matrix containing only 1s ands 0s. 必须是一个二维的有shape参数的ndarray或者tensor具体值(所以如果只是一个一维数据需要先转成np.array([ndarray_data])或者tf.expand_dims(tensor_data, 0)),且其中的数据不能是logits,而应该是0,1值的ids。

返回:y : list of tuples. The set of labels for each sample such that y[i] consists of classes_[j] for each yt[i, j] == 1. 返回的是一个一维列表,其中的元素为label的tuple(因为可能是multi-label)。

输出示例


 
 
  1. from sklearn.preprocessing import MultiLabelBinarizer
  2. import numpy as np
  3. mlb = MultiLabelBinarizer()
  4. ids = mlb.fit_transform([( 'a', 'b'), ( '大', '小'), ( '大',), ( '左右', '晨')])
  5. ids = mlb.transform([ 'a', '小'])
  6. labels1 = mlb.inverse_transform(ids)
  7. labels2 = mlb.inverse_transform(np.array([[ 0, 0, 0, 1, 0, 0]]))
  8. print(ids)
  9. print(mlb.classes_.size)
  10. print(mlb.classes_)
  11. print(ids)
  12. print(labels1)
  13. print(labels2)
  14. [[ 1 0 0 0 0 0]
  15. [ 0 0 0 1 0 0]]
  16. 6
  17. [ 'a' 'b' '大' '小' '左右' '晨']
  18. [[ 1 0 0 0 0 0]
  19. [ 0 0 0 1 0 0]]
  20. [( 'a',), ( '小',)]
  21. [( '小',)]

[preprocessing.MultiLabelBinarizer([classes, …])]

Encoding categorical features

[Encoding categorical features]

皮皮blog

from: http://blog.csdn.net/pipisorry/article/details/52247679

ref: [sklearn.preprocessing: Preprocessing and Normalization]

[Preprocessing data]

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据预处理归一是机器学习中非常重要的步骤,可以提高模型的准确性和效率。下面是数据预处理归一的介绍和演示: 数据预处理: 1. 缺失值处理:可以通过填充均值、中位数或者众数等方法来处理缺失值。 2. 异常值处理:可以通过删除异常值或者用均值、中位数等方法来填充异常值。 3. 数据平滑:可以通过平滑算法来去除噪声,例如移动平均法、指数平滑法等。 4. 数据集成:可以将多个数据源的数据进行集成,例如数据表连接、数据记录合并等。 5. 数据变换:可以通过对数据进行函数变换、离散、规范等方法来改变数据的分布。 归一: 1. 最小-最大规范:将数据缩放到[0,1]区间内,公式为:(x-min)/(max-min)。 2. Z-score规范:将数据缩放到均值为0,标准差为1的正态分布中,公式为:(x-mean)/std。 3. 小数定标规范:将数据缩放到[-1,1]或者[-0.5,0.5]之间,公式为:x/10^k,其中k为使得所有数据的绝对值都小于1的整数。 下面是一个数据预处理归一的例子: ```python import pandas as pd from sklearn.preprocessing import MinMaxScaler, StandardScaler # 读取数据 data = pd.read_csv('data.csv') # 缺失值处理 data = data.fillna(data.mean()) # 异常值处理 data = data[(data['value'] >= 0) & (data['value'] <= 100)] # 数据平滑 data['value'] = data['value'].rolling(window=3).mean() # 数据集成 data = pd.merge(data, other_data, on='id') # 数据变换 data['value'] = data['value'].apply(lambda x: x**2) # 最小-最大规范 scaler = MinMaxScaler() data['value'] = scaler.fit_transform(data[['value']]) # Z-score规范 scaler = StandardScaler() data['value'] = scaler.fit_transform(data[['value']]) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值