简介
贪心算法(Greedy Algorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法并不保证得到最优解,但在很多情况下,它的结果已经足够好,且实现简单,效率高。
什么是贪心算法
贪心策略:解决问题的策略,局部最优->全局最优
- 把问题的过程分为若干步
- 解决每一步的时候,都选择当前看起来“最优”的解法
- “希望”得到全局最优解
贪心算法的特点
-
贪心策略的提出
贪心策略的提出是没有标准以及模板的
可能每道题的贪心策略都不同 -
贪心策略的正确性
因为有可能“贪心策略”是一个错误的方法,我们可以用常见的证明方法去证明。
例题
860.柠檬水找零
860.柠檬水找零
题目是问我们能否正确找零,能返回true,不能返回false,这里注意一开始我们手上没有零钱,只能用收取的钱找零。
贪心
分类讨论:
5元----->收下
10元----->找5元,收下
20元---->找10 +5
------>找5+5+5
通过分类讨论我们看到,5元既能找给10元,又能找给20元,所以这里的贪心策略是尽可能留下多的5元在手中,能用10找零就用10
class Solution {
public:
bool lemonadeChange(vector<int>& bills) {
int five=0,ten=0;
for(auto& i:bills)
{
if(i==5)five++;
else if(i==10)
{
if(five==0)return false;
five--;ten++;
}
else
{
if(ten&&five)//贪心
{
ten--;five--;
}
else if(five>=3){
five-=3;
}
else
return false;
}
}
return true;
}
};
2208.将数组和减半的最少操作数
由题:我们要进行一个操作:将数组中的一个数减半,使得数组和为原数组和的一半或以下,求最小的操作数。
很容易想到,我们每次让数组中最大的数减半,则能得到最小的操作数。获取每次数组的最大数我们可以用大根堆
具体解法:贪心+大根堆
具体策略:
每次挑选当前数组中最大的那个数,然后减半
直到数组和减少到至少一半为止
class Solution {
public:
int halveArray(vector<int>& nums) {
priority_queue<double> heap;
double sum=0.0;
for(int x:nums)
{
heap.push(x);
sum+=x;
}
sum/=2.0;
int count=0;
while(sum>0)
{
double t=heap.top()/2;
sum-=t;
count++;
heap.pop();
heap.push(t);
}
return count;
}
};