【算法】-贪心算法

简介

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法并不保证得到最优解,但在很多情况下,它的结果已经足够好,且实现简单,效率高。

什么是贪心算法

贪心策略:解决问题的策略,局部最优->全局最优

  1. 把问题的过程分为若干步
  2. 解决每一步的时候,都选择当前看起来“最优”的解法
  3. “希望”得到全局最优解

贪心算法的特点

  1. 贪心策略的提出
    贪心策略的提出是没有标准以及模板的
    可能每道题的贪心策略都不同

  2. 贪心策略的正确性
    因为有可能“贪心策略”是一个错误的方法,我们可以用常见的证明方法去证明。

例题

860.柠檬水找零

860.柠檬水找零
在这里插入图片描述
题目是问我们能否正确找零,能返回true,不能返回false,这里注意一开始我们手上没有零钱,只能用收取的钱找零。

贪心
分类讨论:
5元----->收下
10元----->找5元,收下

20元---->找10 +5
------>找5+5+5

通过分类讨论我们看到,5元既能找给10元,又能找给20元,所以这里的贪心策略是尽可能留下多的5元在手中,能用10找零就用10

class Solution {
public:
    bool lemonadeChange(vector<int>& bills) {
int five=0,ten=0;
for(auto& i:bills)
{
    if(i==5)five++;
    else if(i==10)
    {
    if(five==0)return false;
    five--;ten++;
    }
    else
    {
        if(ten&&five)//贪心
        {
            ten--;five--;
        }
        else if(five>=3){
            five-=3;
        }
        else
        return false;
    }
}
return true;
    }
};

2208.将数组和减半的最少操作数

2208.将数组和减半的最少操作数

在这里插入图片描述
由题:我们要进行一个操作:将数组中的一个数减半,使得数组和为原数组和的一半或以下,求最小的操作数。
很容易想到,我们每次让数组中最大的数减半,则能得到最小的操作数。获取每次数组的最大数我们可以用大根堆

具体解法:贪心+大根堆

具体策略:
每次挑选当前数组中最大的那个数,然后减半
直到数组和减少到至少一半为止

class Solution {
public:
    int halveArray(vector<int>& nums) {
        priority_queue<double> heap;
        double sum=0.0;
        for(int x:nums)
        {
            heap.push(x);
            sum+=x;
        }
        sum/=2.0;
        int count=0;
        while(sum>0)
        {
            double t=heap.top()/2;
            sum-=t;
            count++;
            heap.pop();
            heap.push(t);
        }
        return count;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gsfl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值