故障诊断 | 基于FDTransformer的机械设备故障诊断

本文介绍了一种基于FDTransformer的机械设备故障诊断方法,通过改进Transformer模型,结合Dropout和多通道1D-CNN,提高了故障识别率,与CNN和传统Transformer相比,其在特征提取和泛化能力上表现出优势,适用于移动设备,能有效提取关键故障特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

概述

基于注意力机制的Transformer模型有着优于卷积神经网络(convolutional neural network,CNN)的特征提取能力且在自然语言处理及计算机视觉领域都得到成功的应用。

1、对原始振动信号利用Dropout技术进行数据增强,提高模型的泛化能力;
2、利用多通道一维卷积进行数据处理并得到矩阵形式;
3、利用Dense连接的Encoder 结构进行机械设备的故障特征提取;
4、利用分类模块得到故障诊断结果。
分别采用变转速轴承数据和轮对轴承数据对模型进行试验验证。

试验结果表明,该模型在两种数据集上均达到99%以上的故障识别率,与CNN相比可以更好地提取机械设备故障特征,有工程应用价值。

模型

对机械设备

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值