KAN神经网络 | KAN神经网络基础附代码

KAN网络是一种新型架构,基于Kolmogorov–Arnold表示定理,可在科学领域以较少参数实现高效表现。通过两层KAN网络,可模拟多元连续函数,如乘法和除法运算。KAN使用B样条函数进行参数化,通过L-BFGS优化器训练。KAN在符号主义和连接主义之间寻找平衡,可能成为两者间的桥梁。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

研究背景

KAN是一种全新的神经网络架构,它与传统的MLP架构不同,能够用更少的参数量在Science领域取得惊人的表现,并且具备可解释性,有望成为深度学习模型发展的一个重要方向。

运用KAN,我们不仅能够在函数拟合、偏微分方程求解(PDE)上取得不错的成果,甚至能够解决拓扑理论中的Knot Theory、处理凝聚态物理中的Anderson Localization问题。

KAN的全称是Kolmogorov–Arnold Network,致敬了两位伟大的已故数学家,其背后的核心思想是Kolmogorov–Arnold表示定理,即KART(Kolmogorov–Arnold Representation Theorem)。
KART的核心思想是:对于任何一个多元连续函数,都能够表示为有限个单变量函数和加法的组合。

数学定理读起来比较拗口,但如果把它图示化出来,就很容易弄懂。

假设有一个多元连续函数y=f(x1,x2),它可以表达为一个有着2个input(x1和x2)、一个output(y)、以及5个隐藏层神经元的Kolmogorov Network。隐藏层神经元数量为2n+1=5,这里的n指的是input变量的个数。

对于第一个神经元,它接收到两个branch的信号࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值