用于小样本轴承故障诊断的多尺度物理信息网络
一、引言
1.1、研究背景和意义
轴承作为旋转机械中的关键部件,其运行状态直接影响到整个机械系统的稳定性和安全性。因此,轴承故障的早期诊断对于预防设备故障、减少维护成本、提高生产效率具有重要意义。在实际工业应用中,轴承故障诊断面临诸多挑战,如故障数据的获取成本高、故障类型多样、故障信号复杂等。特别是在小样本情况下,传统的故障诊断方法往往难以有效识别和分类故障。
1.2、故障诊断技术的挑战
尽管轴承故障诊断技术已经取得了显著进展,但仍然存在一些亟待解决的问题。首先,故障数据的获取通常需要停机检测,这不仅影响生产效率,还可能因停机时间过长导致经济损失。其次,轴承故障类型多样,不同类型的故障其信号特征也存在显著差异,给故障分类和识别带来了困难。此外,实际工业环境中的噪声干扰、信号复杂等因素也增加了故障诊断的难度。
1.3、提出方法概述
为了解决上述挑战,本文提出了一种新的多尺度物理信息网络方法。该方法通过整合多源物理信息,利用深度学习技术,从不同尺度上提取和分析故障特征,从而实现更精准的故障诊断。具体而言,该方法首先对振动信号进行预处理,然后通过卷积神经网络(CNN