毕 业 设 计(论 文)开 题 报 告
1.结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写 2000字左右的文献综述: | |
文 献 综 述
风电场的场所选择往往比较偏远,加之运行的环境恶劣,因此风力发电机组的运行维护、维修的成本远高于传统的其他发电方式,较大的拉低了风电场的整体运行效益。对于一些运行时间已经较长的风机设备的维护成本更是达到了发电厂收入的 10%-15%,而在特殊的地区,比如海上和沙漠,其维护成本还要更高。因此,为降低风力发电机组的运维成本,更好的解决风力发电机组故障诊断问题,提高故障诊断的准确度和减少诊断时间,辅助故障处理技术人员更快速的定位、解决问题,需要大力发展风力发电机组的故障诊断技术,提升风力发电机组的故障诊断效率和降低运行维护成本。 传统人工管理风力发电机故障诊断系统会消耗过多的人力和物力,很有可能造成管理员管理混乱,从而对风力发电机故障诊断系统的正常运营造成影响,很多传统的管理模式已经不能够适应人们的要求。我们可以充分利用计算机的资源,完成风力发电机故障诊断的信息服务。最后为了方便管理员能够大量处理业务,可以借用于计算机强大的信息资源。在考虑到用户的便处之时还需要考虑到用户使用的安全问题。 随着对各种不同模型的讨论和信息技术的最终发展,并且还讨论了在海量数据中如何安全和高效地存储的问题,人们逐渐发明了一些办法。将计算机软硬件和数据库进行结合起来,研究了一套能够为企业正常运行而提供的功能,这种功能最后带动了信息管理系统的发展。一个风力发电机故障诊断系统不仅能够解决用户的需求,还能够降低人工的操作出现错误的几率。这能够使得管理员的管理更加标准化。 随着风电技术的不断发展,系统的故障分析、维护的要求也越来越高,加之风力发电
2022年,Peng H为了解决风力发电机故障诊断系统中存在的问题,提出了一种具有B / S和C / S架构的风力发电机故障诊断系统。系统采用基于Android和Web平台的B / S和C / S混合架构,以确保系统的稳定和安全运行,采用了SIP协议,RTP协议和JNI技术。 2020年,Asiddao S开发了风力发电机故障诊断系统,基于 Freemarker和 Spring MVC( Model View Controller.,模型视图控制器),设计开发了自己的服务器端框架,提高了开发效率,增强了系统安全性。通过扩展 Spring框架,广泛使用业内已经成熟应用的AOP( Aspect OrientProgramming,面向切面编程)技术和注解技术,降低了模块之间的耦合度,提高了开发效率,减少了维护成本。通过大量使用负载均衡技术,并结合自主研发的负载均衡模块,在后台建立了稳定高效的集群系统,同时也显著提高了用户访问速度,并通过自主研发的监控平台,来对众多的后台服务器进行监控。通过广泛采用 Squid、 Memcache等缓存技术和页面静态化技术,极大地减少了访问后台数据库和文件系统的压力,并显著提高了用户的数据读取速度。 2018年,Sheng Gao采用 Struts2+ Hibernate4 +Spring3编程技术,以MySQL作为数据库,以 Myeclipse作为编辑工具。相对于传统的C/S模式,选择采用更为便捷的B/S模式和MVC模式。服务器采用 Tomcat+ Nginx结合运行,减轻服务器的压力。同时,对风力发电机故障诊断系统的关键功能进行全面测试,并对网站目前存在的问题和网站未来的发展进行分析。 2、国内研究现状 2020年,孙岩开发了风力发电机故障诊断系统,系统是基于 Java Web进行开发的,系统后台数据库是MYSQL。在系统实现过程中借助了MVC的设计模式进行实现,通过采用Aiax提升系统的用户的体验,并通过 Web Service为系统后续的升级做好了准备。 2021年,蒋莉开发了风力发电机故障诊断系统,该系统能够在公网中使用,以用户和管理员作为实用对象,为其提供相应的信息化服务。通过架构 SQL Server2008数据库,为系统平台实现数据负载和传输,使得风力发电机故障诊断系统数据能够空问传输。 2021年,黄文翔开发了风力发电机故障诊断系统,SSH整合框架技木和 MySQL查询优化。在此基础上设计实现了基于SSH整合框架的风力发电机故障诊断系统。在系统数据库设计中,MySQL配置参数调优和MySQL查询重用功能两个方面进行了研究。并提出数据库査询优化措施,包括对MySQL数据缓冲区和日志缓冲区参数的调优,以及通过设计算法来消除SQL语句多余字符及规范化SQL语句中的关键词来提高 MySQL查询结果重用的概率,从而提高了 MySQL的查询性能并进行了相关测试。 2022年,吴姝敏对开发的风力发电机故障诊断系统的关键技术作了详细的调研,主要就是 Django框架和ORM系统的特点,重点讲述了 Django框架自动集成的ORM系统大大缩短程序员的开发周期,降低了系统的维护难度。在系统设计初期对风力发电机故障诊断系统的需求做了明确的调研,并通过对业务逻辑的深入分析确定了系统最终完成的功能模块。 三、课题初步设想 选择服务器平台与开发工具,开发工具使用IntelliJIDEA,数据库选用MySQL。该系统使用Java程序语言编写,以开放源码的SSM结构来完成整个体系结构,以MySQL数据库形式保存数据,Tomcat则充当服务器,负责接收来自前端的用户的要求。风力发电机故障诊断系统采用MVC模型,既能实现动态优化,又能降低数据库SQL语句的重复编写,又能调用常用的数据库操作方式。MVC能够减少风力发电机故障诊断系统中的代码数量,从而达到最优的目的。 参考文献 [1]耿家豪,廖宇,马先超,王港.基于XGBoost的风力发电机故障诊断[J].通信与信息技术,2022(06):42-46. [2]孙瑜. 基于数字孪生的风力发电机故障诊断研究[D].黑龙江:东北石油大学,2022. [3]王文杰.风力发电机状态监测和故障诊断技术研究[J].光源与照明,2022(05):167-169. [4]张徐杰. 基于自编码器的风力发电机组故障诊断方法研究[D].浙江:浙江理工大学,2022. [5]孙子明,葛强,石建全,李振志,吴丹丹,徐逍帆.基于GA-BP神经网络的双馈风力发电机故障诊断[J].电工技术,2022(05):19-21. [6]丁德强. 风力发电机变桨轴承故障诊断系统研制[D].沈阳理工大学,2021. [7]蔡军. 风力发电机组智能故障诊断系统的研究与实现[D].浙江工业大学,2019. [8]郭梅. 风力发电机传动系统振动监测与故障诊断系统研究[D].浙江大学,2017. [9]李伟华. 风力发电机组轴承故障诊断系统研究及应用[D].北京:华北电力大学,2017. [10]钱泽琛. 汽轮发电机组远程振动监测和故障诊断系统研究[D].华北电力大学(北京),2021. [11]Liu Dongdong,Cui Lingli,Cheng Weidong. Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation[J]. Renewable Energy,2023,80(6):18-23. [12]Yang Shuai,Zhou Yifei,Chen Xu,Deng Chunyan,Li Chuan. Fault diagnosis of wind turbines with generative adversarial network-based oversampling method[J]. Measurement Science and Technology,2023,139(6):24-26. [13]Sihua Wang,Wenhui Zhang,Gaofei Zheng,Xujie Li,Yougeng Zhao. Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization[J]. Energy Engineering,2022,119(6):22-23. [14]. Science - Applied Sciences; Data on Applied Sciences Detailed by Researchers at Shandong University (Fault Diagnosis for Wind Turbines Based on ReliefF and eXtreme Gradient Boosting)[J]. Science Letter,2020(04):15-46. [15]Vig Sunny,Singh Harvinder. Mitigation of Voltage Instability in the Hybrid Solar or Wind System using Facts Device[J]. IOP Conference Series: Earth and Environmental Science,2023(12):30-46. |
毕 业 设 计(论 文)开 题 报 告
2.本课题要研究或解决的问题和拟采用的方法(途径): |
搭建基于B/S架构的系统平台,支持系统登录,用户管理,首页展示和数据分析等功能模块,实现风力发电机故障诊断功能。
数据可视化,是关于数据视觉表现形式的科学技术研究,可以帮助人们更快速、方便地获取数据并理解隐藏在数字背后的信息,本课题需要给用户展示风轮故障类型可视化、发电机故障类型可视化、调向器故障类型可视化、塔架故障类型可视化的信息。
本课题需自学并改良评估体系和方法,应用于系统,以实现风力发电机故障诊断模块。
1.本系统基于B/S开发模式,开发简单,共享性强,便于后期的系统维护。对于之前没接触过的相关技术,通过网上查阅资料以及观看技术教程,通过自学也都可以顺利解决。 2.通过复杂的数据可视化,可以将风力发电机故障诊断数据建立起联系,从而发现规律的和特征,通过学习使用Apache ECharts,实现数据可视化。 3.通过网上查阅资料或者观看视频来学习现有的风力发电机故障诊断系统,并且加以改进,形成风力发电机故障诊断系统,实现科学性与应用性结合、定量分析为主,全面性,可操作和可对比性。 |
毕 业 设 计(论 文)开 题 报 告
指导教师意见: |
1.对“文献综述”的评语: 2.对本课题的深度、广度及工作量的意见和对设计(论文)结果的预测: 指导教师: 2023年03月29日 |
所在院(系)审查意见: 负责人: 2023年03月29日 |