摘 要
基于深度学习的电梯智能安全监测平台的设计与实现
摘要:传统的电梯监测需要人工巡检,时耗力且容易出现漏检情况。而基于深度学习的电梯智能安全监测平台可以实现自动化监测,大大提高监测效率,减少人力成本。
我们使用深度学习框架PyTorch实现了基于深度学习v8的物体检测和识别模块,并在数据集上进行了训练和测试。该模块通过图像分割算法和特征提取对检测到的物体进行分析检测,从而判断物体是否存在违规情况。最后,我们通过实验验证了该系统的有效性和可行性,结果表明该系统具有较高识别准确率,可以应用于实际场景中安全监控等领域。
本论文的主要研究工作及取得的成果如下:
使用Flask等软件开发技术,设计并成功开发出了一套基于深度学习算法的电梯安全检测识别系统。
首先,利用图像处理和机器学习算法预处理图像,以提高图像质量和准确的物体检测率。然后,将检测到的物体进行识别和特征提取,利用预先构建的物体库进行比对,并计算相似性分数以判断是否为电梯安全检测。
本研究旨在实现一种基于深度学习的电梯智能安全监测平台在国内外都有一定的研究和应用,通过深度学习算法和计算机视觉技术,可以实时监测和分析电梯内的人员行为,提高电梯的安全性和管理效率。
。
关键词:安全检测;Flask; Python;YOLOV8
Abstract: The traditional elevator monitoring needs manual inspection, which consumes time and is prone to missing detection. The elevator intelligent safety monitoring platform based on deep learning can realize automatic monitoring, greatly improve monitoring efficiency and reduce labor costs.
We implemented a YOLOV8-based object detection and recognition module using PyTorch, a deep learning framework, and trained and tested it on a dataset. The module analyzes the detected objects through image segmentation algorithm and feature extraction, so as to determine whether the objects have violations. Finally, we verify the effectiveness and feasibility of the system through experiments, and the results show that the system has a high recognition accuracy, and can be applied to the field of security monitoring in practical scenarios.
The main research work and achievements of this paper are as follows:
By using Flask and other software development technology, a set of elevator safety detection and identification system based on YOLO algorithm is designed and successfully developed.
First, image processing and machine learning algorithms are used to pre-process images to improve image quality and accurate object detection rates. Then, the detected objects are identified and feature extracted, compared with the pre-built object library, and the similarity score is calculated to judge whether it is the elevator safety detection.
This study aims to realize an elevator intelligent safety monitoring platform based on deep learning, which has certain research and application at home and abroad. Through deep learning algorithms and computer vision technology, personnel behaviors in elevators can be monitored and analyzed in real time to improve elevator safety and management efficiency.
.
Keywords: safety detection; Flask; Python; YOLOV8
目 录
1 绪论
1.1研究背景与意义
电梯作为现代城市生活中不可或缺的交通工具之一,其安全性一直备受关注。然而,传统的电梯安全监测手段存在一些局限,例如基于传感器的监测系统可能无法准确识别复杂的故障模式,而且维护成本较高。
近年来,随着深度学习技术的不断发展,其在计算机视觉、模式识别等领域的应用取得了显著进展。这为电梯安全监测提供了新的可能性,通过深度学习技术结合传感器数据、图像数据等多源信息,可以实现对电梯运行状态的更精准、更及时的监测和诊断,从而提高电梯的安全性和可靠性。
基于深度学习的电梯智能安全监测平台的研究背景主要包括以下几个方面:
数据驱动的方法:传统的基于规则的电梯监测方法通常依赖于专家知识和经验,难以覆盖所有的故障模式,并且对环境变化较为敏感。而深度学习技术可以通过大量的数据自动学习特征和模式,能够更全面、更准确地识别电梯运行中的异常情况。
多模态数据融合:电梯监测需要同时考虑多种类型的数据,包括传感器数据、图像数据等。深度学习技术可以有效地将不同类型的数据进行融合,提高监测系统的全面性和准确性。
实时监测与预警:深度学习模型可以实现实时的数据处理和分析,能够及时发现电梯运行中的异常情况,并提供预警信息,有助于及时采取措施避免事故发生。
综上所述,基于深度学习的电梯智能安全监测平台的研究背景是基于对电梯安全性和可靠性需求的不断提高,以及深度学习技术在数据驱动、多模态数据融合和实时监测预警等方面的优势。通过将深度学习技术应用于电梯监测领域,可以提高电梯的安全性和可靠性,减少事故发生的风险,保障乘客和设备的安全。
1.2国内外研究现状
基于深度学习的电梯智能安全监测平台的研究在国内外都吸引了广泛的关注和探讨。以下是一些国内外在这个领域的研究现状:
国内研究现状:
国内的一些大学和研究机构致力于基于深度学习技术开展电梯智能安全监测平台的研究,探索如何利用深度学习算法对电梯传感器数据和图像数据进行处理和分析,以实现电梯的实时监测和预警。
一些电梯制造商和智能安防企业也在研发基于深度学习的电梯智能安全监测产品,结合传感器技术、视频监控技术等,为电梯运行状态提供实时监测和智能诊断服务。
在国内,一些大型电梯制造商和科技公司已经开始研发和应用基于深度学习的电梯智能安全监测平台。这些平台可以通过摄像头和传感器等设备实时监测电梯内的人员数量、行为和状态,例如检测人员是否超载、是否有异常行为等。通过深度学习算法的分析和识别,可以及时发现和处理电梯内的安全问题,提高电梯的运行安全性。
国外研究现状:
国外的一些大学和研究机构也在开展基于深度学习的电梯智能安全监测平台的研究,他们通过深度学习算法对电梯传感器数据和图像数据进行处理和分析,提出了一些有效的方法和技术,用于电梯故障诊断和预防。
一些国外的电梯制造商和智能安防企业已经将基于深度学习的电梯监测技术应用到实际产品中,推出了具有智能安全监测功能的电梯系统,这些系统能够实现对电梯运行状态的实时监测和智能诊断,提高了电梯的安全性和可靠性。
在国外,也有一些研究机构和公司在电梯安全监测领域进行了深入的研究和应用。他们利用深度学习算法和计算机视觉技术,开发出了一些先进的电梯智能安全监测系统。这些系统可以实时监测电梯内的人员行为,例如检测人员是否携带危险物品、是否有异常行为等,以提高电梯的安全性和管理效率。
总的来说,基于深度学习的电梯智能安全监测平台在国内外都有一定的研究和应用,通过深度学习算法和计算机视觉技术,可以实时监测和分析电梯内的人员行为,提高电梯的安全性和管理效率。
综合来看,国内外在基于深度学习的电梯智能安全监测平台的研究和应用上都取得了一定的进展,但仍然存在一些挑战和待解决的问题,例如数据采集与处理、模型优化与验证、系统集成与部署等方面,需要进一步深入研究和探索。
1.3论文主要研究工作
本论文拟初步研究开发出一套完整的基于深度学习平台的电梯安全检测识别系统,因此开发一套基于深度学习的电梯安全检测系统显得尤为重要。然后使用YOLO算法,、数据清洗,数据融合,计算,分析等流程,数据通过处理后持久化到MySQL数据库中存储。在计算出分析结果数据后,使用Flask等软件开发技术等框架完成系统的后台的开发。
远程实时监测:通过该平台可以从建筑一层电梯外摄像头和电梯内摄像头监测电梯自身开关门异常情况以及抽烟,电动车进电梯的不合规行为,并及时播报语音制止行为。
目标检测算法:平台需要使用深度学习算法对电梯内的人员进行目标检测,以实现人数统计和安全监测。
远程上传数据:平台需要将实时监测到的数据上传至云平台,以便后续的数析和处理。
数据分析与可视化:平台需要对上传的数据进行分析和处理,并将结果以可视化的方式展示给用户,以便用户能够直观地了解电梯内的情况。
2 技术总述
2.1 YOLO算法
Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别,整个系统如下图所示:
首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络识别结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快。
Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。
Yolo模型采用预定义识别区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许识别出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个识别区,很粗略的覆盖了图片的整个区域,就在这98个识别区中进行目标检测。
图2-1 YOLO模型
YOLOv8有3个不同特征尺度的输出,分别为13*13*255,26*26*255,52*52*255。YOLOv8中延续了聚类得到先验框尺寸的方法。为每种采样尺度设定3种先验框,总共聚类出9种尺寸的先验框。其中在最小的13*13特征图上,有最大的感受野,应用较大的先验框,适合检测较大的对象。其他可类推。具体模型结构:
图2-2 YOLO模型
值得注意的是,YOLO v8每个cell中有3个box,每个box有五个基本参数。所以对于416*416的图片,v2的bounding boxes有13*13*5=845个,v8则有3*(13*13+26*26+52*52)=10467个。
在代价函数上,YOLO v8做出了修改,不使用softmax(softmax层都假设一张图像或一个object只属于一个类别),而用逻辑回归层来对每个类别做二分类,主要用到sigmoid函数,可以将输出约束在0到1范围内,因此当一张图像经过特征提取后的某一类输出经过sigmoid函数约束后如果大于0.5,就表示属于该类,这样一个框就可以识别多个类别。
2.2 Flask技术
Flask是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以物体内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。这套框架是以比利时的吉普赛爵士吉他手Flask Reinhardt来命名的。2019年12月2日,Flask 3. 0发布 。
Flask是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Flask框架中,还包含许多功能强大的第三方插件,使得Flask具有较强的可扩展性 [2] 。Flask 项目源自一个在线物体 Web 站点,于 2005 年以开源的形式被释放出来。其工作流程主要可划分为以下几步:
1.用manage .py runserver 启动Flask服务器时就载入了在同一目录下的settings .py。该文件包含了项目中的配置信息,如前面讲的URLConf等,其中最重要的配置就是ROOT_URLCONF,它告诉Flask哪个Python模块应该用作本站的URLConf,默认的是urls .py
2.当访问url的时候,Flask会根据ROOT_URLCONF的设置来装载URLConf。
3.然后按顺序逐个匹配URLConf里的URLpatterns。如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)
4.最后该view函数负责返回一个HttpResponse对象。
2.3 Python技术
Python由荷兰国家数学与计算机科学研究中心的吉多·范罗苏姆于1990年代初设计,作为一门叫做ABC语言的替代品。 Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。 Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C、C++或其他可以通过C调用的语言扩展新的功能和数据类型。 Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。
2.4 本章小结
本章主要分析了系统开发过程中使用到的技术点和框架,通过研究这些技术的原理后,在本设计中加以应用,包括YOLO算法,以及基于Flask框架的系统后台技术,通过预研上述技术点并加以应用从而开发出基于深度学习电梯安全检测数据分析系统。
3 电梯安全检测识别系统实现
3.1系统功能
通过前面的功能分析可以将基于深度学习的电梯安全检测识别分析平台的研究与实现的功能主要包括用户登录、电梯安全检测识别管理、数据告警等内容。
3.2可行性研究
通过对系统研究目标及内容的分析审察后,提出可行性方案,并对其进行论述。主要从技术可行性出发,再进一步分析经济可行性和操作可行性等方面。
开发系统所涉及到的资料,一般是在图书馆查阅,或是在网上进行查找收集。所需要的一些应用软件也都是在网上可以免费下载的,因此,开发成本是几乎为零。但是开发出来的系统,还是具有高效率,低成本,较高质量的。所以,从经济可行性的角度,该系统符合标准。
技术可行性是考虑在现有的技术条件下,能否顺利完成开发任务。以及判断现有的软硬件配置是否能满足开发的需求。而本系统采用的是YOLO算法开发框架,并非十分困难,所以在技术上是绝对可行的。此外,计算机硬件配置是完全符合发展的需要。
当前计算机信息化的知识已经十分普及了,现在的操作人员也都是对系统环境有很强的适应性,各类操作人员大都是有过培训补充的,因此完全不影响组织结构,所以在运行上也是可行的。
从时间上看,在大四的最后一个学期,在实习工作与完成毕设两件大事相交叉的时间里,结合之前学习的相关知识,并开发系统,时间上是有点紧,但是也不是完全没可能实现,通过这段时间的努力功能基本实现。
3.3 系统实现流程
基于深度学习算法的电梯安全检测识别系统可以按照以下流程进行系统实现:
图3-1 系统实现流程
数据准备:收集大量包含遮挡和非遮挡物体的图像数据集,并进行标注,标注出物体位置和是否有遮挡。然后将数据集分为训练集和测试集。
模型训练:
a. 网络架构选择:选择适合电梯安全检测识别任务的YOLO版本,如YOLOv8、YOLOv4等。
b. 预训练模型加载:使用在大规模数据集上预训练好的权重参数初始化模型,如COCO数据集。
c. 微调训练:将训练集输入到模型中进行微调训练,通过反向传播算法更新模型的权重参数。同时,可以采用数据增强技术,如随机裁剪、旋转、缩放等,增加训练集的多样性和泛化能力。
d. 模型评估:使用测试集评估模型的性能,计算准确率、召回率、F1分数等指标,根据评估结果对模型进行调优。
遮挡检测:使用训练好的模型对待检测的图像进行遮挡检测。
a. 图像预处理:对待检测的图像进行预处理,如图像缩放、灰度转换等,以适应模型的输入要求。
b. 图像前向传播:将预处理后的图像输入到训练好的模型中进行前向传播,得到遮挡检测结果。
c. 边界框处理:根据模型输出的边界框信息,对遮挡区域进行定位和标记。
结果输出:根据遮挡检测结果,输出遮挡物体的位置、遮挡程度或分类结果。
需要注意的是,以上流程仅为基于深度学习算法的电梯安全检测识别系统的一种实现方式,具体的实现细节可能根据具体需求和场景的不同而有所调整。此外,还可以结合其他技术和方法,如图像处理、特征提取等,进一步完善系统的性能和鲁棒性。
3.4系统平台架构
图3-2 系统架构图
基于深度学习算法的电梯安全检测识别系统的系统平台架构可以包括以下几个关键组件:
前端图像输入:前端接收来自摄像头或图像文件的原始图像数据,并将其传递给后端进行处理。
模型部署:在系统中部署经过训练和优化的YOLO算法模型,用于电梯安全检测检测任务。可以选择在本地设备上部署模型,也可以选择在云端服务器上进行部署。
遮挡检测模块:负责接收前端传来的图像数据,调用YOLO算法模型进行遮挡检测,然后输出检测结果。
结果展示界面:将遮挡检测的结果展示给用户,可能包括标记出遮挡区域的图像、遮挡程度的评估结果等信息。
反馈与处理:根据遮挡检测的结果,系统可以进行相应的反馈与处理,例如发出警报、记录遮挡事件、通知相关人员等。
数据存储与管理:系统可能需要对检测到的遮挡数据进行存储和管理,包括原始图像数据、检测结果、历史记录等。
性能优化:为了提高系统的性能和响应速度,可以进行一些性能优化工作,如模型压缩、加速计算、并行处理等。
安全性保障:考虑到物体数据的敏感性,系统需要确保数据传输和存储的安全性,采取相应的安全措施和加密技术。
综合以上组件,基于深度学习算法的电梯安全检测识别系统的系统平台架构应具备实时性、准确性、可靠性和安全性等特点,以满足不同场景下的电梯安全检测检测需求。
3.5 YOLO算法程序设计
对于物体识别中的联合交叉点分析(Joint Cross Point Analysis),通常是指在多个不同特征空间或模型之间进行联合分析,以提高物体识别系统的准确性和鲁棒性。这种方法可以结合多个模型的预测结果,通过交叉验证和融合来实现更可靠的物体识别。
表3-1 联合交叉点分析代码
class JointCrossPointAnalysis: def __init__(self, model1, model2): self.model1 = model1 self.model2 = model2 def perform_joint_analysis(self, image): # 使用第一个模型进行物体检测和特征提取 diantis_model1 = self.model1.detect_diantis(image) features_model1 = self.model1.extract_features(image, diantis_model1) # 使用第二个模型进行物体检测和特征提取 diantis_model2 = self.model2.detect_diantis(image) features_model2 = self.model2.extract_features(image, diantis_model2) # 对两个模型提取的特征进行交叉分析 joint_results = [] for dianti1, feature1 in zip(diantis_model1, features_model1): for dianti2, feature2 in zip(diantis_model2, features_model2): if self.is_same_person(feature1, feature2): joint_results.append((dianti1, dianti2)) return joint_results def is_same_person(self, feature1, feature2): # 实现特征之间的比较逻辑,判断是否属于同一个人 # 这里可以使用一些距离度量方法,如欧氏距离、余弦相似度等 return True # 这里仅作示例,实际应用中需要根据具体特征和模型进行定义 |
将数据处理成yolo格式,并划分train、val,如图3-3所示。
图3-3 YOLO算法程序结构
本文中如需分析目前物体数据集网站上的物体情况,首先需要定义一个模型任务中的核心逻辑,需要在代码中对每条物体数据的特征字段过滤,下面为分析任务的主要逻辑代码。
表3-2 主要模型类
import cv2 import numpy as np class diantiMaskDetectionModel: def __init__(self, model_path, confidence_threshold=0.5): self.net = cv2.dnn.readNetFromDarknet(model_path) self.confidence_threshold = confidence_threshold def detect_dianti_mask(self, image): # 将图像转换为blob格式 blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) # 设置网络的输入 self.net.setInput(blob) # 前向传播计算 layer_names = self.net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] outputs = self.net.forward(output_layers) height, width = image.shape[:2] boxes = [] confidences = [] # 解析输出并筛选出置信度高于阈值的边界框 for output in outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if class_id == 0 and confidence > self.confidence_threshold: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) # 对边界框进行非极大值抑制 indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confidence_threshold, 0.4) # 获取遮挡识别结果 results = [] for i in indices: i = i[0] x, y, w, h = boxes[i] confidence = confidences[i] results.append({ 'box': (x, y, w, h), 'confidence': confidence }) return results |
为了验证YOLO的识别效果的好坏,本文另外建立了基于卷积神经网络的物体模型,并对识别结果进行了对比。卷积神经网络(Convolutional Neural Networks,YOLO)是深度学习应用于分类识别和回归任务的经典模型。如图5-9所示,是本文设计的基于深度学习网络的物体模型,该模型由两层卷积层,两层池化层和三层全连接层和一个输出层组成。
图3-4 模型网络结构图
class diantiMaskDetectionEvaluation: def __init__(self, ground_truth_labels): self.ground_truth_labels = ground_truth_labels def evaluate_results(self, predicted_results): num_samples = len(self.ground_truth_labels) true_positives = 0 false_positives = 0 false_negatives = 0 for i in range(num_samples): if self.ground_truth_labels[i] == 1 and predicted_results[i] == 1: true_positives += 1 elif self.ground_truth_labels[i] == 0 and predicted_results[i] == 1: false_positives += 1 elif self.ground_truth_labels[i] == 1 and predicted_results[i] == 0: false_negatives += 1 precision = true_positives / (true_positives + false_positives) recall = true_positives / (true_positives + false_negatives) accuracy = (true_positives + num_samples - true_positives - false_negatives) / num_samples return precision, recall, accuracy |
上述代码中,diantiMaskDetectionEvaluation类接受一个包含真实标签(ground truth labels)的列表作为初始化参数。然后,evaluate_results方法接受一个预测结果列表,并计算出准确率(precision)、召回率(recall)和精度(accuracy)。
在评估过程中,我们将真实标签和预测结果进行比较,统计出真正例(true positives)、假正例(false positives)和假负例(false negatives)的数量。然后,利用这些统计数据计算出准确率、召回率和精度。
4 后台系统实现
基于深度学习的电梯安全检测识别分析平台的基本业务功能是采用Flask框架实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。
4.1 开发环境与配置
本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。基于深度学习的电梯安全检测识别分析平台使用Pycharm集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行。本系统的主要开发环境以及开发工具如表4-1所示。
表4-1 系统开发环境和工具
项目 | 系统环境及版本 |
硬件环境 | Windows 64 位操作系统 |
Python | Python2.6 |
数据库 | MySql |
开发工具 | Pycharm |
项目架构 | Flask |
4.2 数据库的设计
数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下2个数据实体:用户、图像检测识别等数据库表。
图4-1 图像检测实体属性图
用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-2所示:
图4-2 用户实体属性图
根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对电梯安全检测识别的管理,使电梯安全检测识别与用户实体存在对应关系。
4.3 系统功能模块实现
用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。具体流程如时序图如4-2所示。
图4-2登录认证流程图
电梯安全检测识别分析系统的用户登录界面如下图所4-3所示:
图4-3用户登录界面
图4-4用户注册界面
登陆成功后,系统会成功跳转至首页,在首页中,位于上方的横栏是对本系统的基本信息的描述和欢迎登录效果,另外登录用户的用户名也会显示在首页中,可直接表明用户己成功登录。左侧则是本系统的导航菜单,可折叠展示,较为方便,右方则为欢迎页效果。
图4-5用户首页界面
4.3.2 电梯图像检测识别功能
电梯图像检测和识别功能是电梯智能安全监测平台中的重要组成部分,其主要目的是通过处理电梯内部或外部摄像头拍摄的图像,实现对电梯环境和乘客行为的监测和识别。利用深度学习技术,对电梯内外摄像头拍摄的图像进行分析,检测异常行为,如乘客摔倒、打架、携带危险物品等,及时发出警报并通知相关人员处理。通过图像处理和目标检测技术,对电梯内的乘客进行计数,实时监测电梯的客流量,为电梯运行管理提供数据支持。电梯图像识别界面如图4-7,4-8所示。
图4-6电梯视频检测识别流程图
图4-7电梯图像检测识别界面
图4-8电梯图像检测识别结果界面
4.3.3电梯视频检测识别功能
电梯图像检测识别功能通过深度学习技术对电梯内外环境进行实时监测与识别,提高了电梯的安全性、运行效率从而形象直观地表达数据蕴含的信息和规律。电梯视频识别界面如图4-10所示。
图4-9电梯视频检测流程图
图4-10电梯视频检测识别界面
电梯安全检测识别分析开发的难点并不在于图表类型的多样化,而在于如何能在简单的一页之内让用户读懂物体数据之间的层次与关联,卷积神经网络在物体模型有有更高的选择性,同时模型也有更高的鲁棒性,相对于需要大量样本、大量调参的其他神经网络,使用YOLO网络训练迭代次数较少、误差率更低,在基物体文本分类中具有一定的优势。
4.4 本章小结
本章主要分析了基于深度学习的电梯安全检测识别分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的电梯安全检测识别分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置和整个系统的核心功能介绍等。
5 总结与展望
5.1 系统开发遇到的问题
由于基于深度学习电梯安全检测识别分析平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。
5.2 总结与展望
电梯安全检测识别系统是在对相关管理范畴进行详细调研后,确定了系统涉及的领域,包括数据库设计、界面设计等,是一个具有实际应用意义的管理系统。根据本毕业设计要求,经过四个多月的设计与开发,监控数据电梯安全检测识别系统基本开发完毕。其功能基本符合用户的需求。
为保证有足够的技术能力去开发本系统,首先本人对开发过程中所用到的工
具和技术进行了认真地学习和研究,详细地钻研了Flask, CSS, HTML等前后端开发技术,同时还研究YOLO算法等。
从电梯安全检测数据分析平台需求分析开始,到整体框架的设计以及各个详细功能的设计具体实现,最后基于深度学习平台的电梯安全检测识别分析系统的基础架构和详细功能已经大致开发完毕,并将其部署在本地服务器当中运行,用户可以登录使用该系统进行电梯安全检测识别的分析结果。
参考文献
[1]刘旭.基于PLC和模糊控制的电梯智能控制系统研究[J].特种设备安全技术,2023,(05):30-33.
[2]符少坤,王亮亮,蒲力晖等.基于树莓派的智能电梯设计[J].电子制作,2023,31(18):59-61+74.
[3]郭亮,侯靖,刘洋.人工智能在电梯故障分析中的应用[J].集成电路应用,2023,40(07):303-305.
[4]程哲,程剑,苏章等.基于深度学习的不安全行为管理技术[J].施工技术(中英文),2023,52(20):118-121.
[5]汤声平.基于深度学习的二轮车辆电梯禁入系统的研究[D].福建工程学院,2023.
[6]曾成.基于微服务架构的电梯广告智能推荐平台的研究与实现[D].华东师范大学,2021.
[7]虞家睿.基于Spark框架的视频大数据并行处理策略及应用研究[D].浙江工业大学,2020.
[8]李颖琪.基于深度强化学习的电梯群组调度研究[D].暨南大学,2020.
[9]李锋.电梯厅门机器人装箱系统视觉检测与识别关键技术研究[D].河北工业大学,2019.
[10]张枫.基于机器视觉的人脸检测与识别算法研究及手扶电梯场景下的实现[D].华南理工大学,2019.
谢 辞
时光飞逝,四年的本科生生涯即将结束。在这四年的时光里,有遇到难题时的手足无措,有获得专业进步时的开心。经历了许多的事情,自己也在不知不觉中成长了很多,心中充盈最多的仍是感激。
首先感谢我的导师,她严谨的治学态度深深地影响每位同学。我要感谢我的父母,他们总是默默的付出,在生活上给与我最大的帮助,在学习上也给我很多建议。
附 录
本部分可选。对于一些不宜放在正文中,但有与论文正文密切相关的材料,可编入毕业论文(设计、创作)的附录中。附录依序用大写正体A,B,C……编序号,如:附录A。附录中的图、表、式等另行编序号,与正文分开,也一律用阿拉伯数字编码,但在数码前冠以附录序码,如:图A1;表B2;式(B3)等。
附表1 参考文献(致谢和附录)格式
类型 | 参考文献 | 参考文献正文 | 致谢 | 致谢 正文 | 附录A | 附录A 正文 |
字体格式 | 三号黑体,加粗 | 小四号宋体 | 三号黑体,加粗 | 小四号宋体 | 三号黑体,加粗 | 小四号宋体 |
行距 | 段前段后1行 | 1.5倍行距 | 段前段后1行 | 1.5倍行距 | 段前段后1行 | 1.5倍行距 |
对齐格式 | 换页,居中 | 顶格 | 换页,居中 | 首行缩进2字符 | 换页,居中 | -- |