基于协同过滤算法的旅游推荐系统的设计与实现开题报告

学 号

姓 名

论文(设计)题目

基于协同过滤算法的旅游推荐系统的设计与实现

命题来源

  教师命题    教师课题   学生自主命题

选题意义(不少于300字):

  国家经济的快速发展使得人民生活日渐富足,从基本的吃饱穿暖已经发展到追求更丰富的精神世界来提升自己。面对生活中各方面的压力,人们开始注重精神方面的放松,越来越多的人选择走出去看世界,旅游正成为一种新兴的休闲方式。随着旅游需求的日渐旺盛,旅游市场的规模也在不断扩大,在发展过程中不断满足人们需求的同时也暴露出了传统旅游业的弊端。旅游行业随着社会进步越来越信息化,逐渐发展为“互联网+旅游”模式,随之而来的问题就有信息过载。所谓信息资源过载是指伴随着社会和经济技术的发展,越来越多的信息被生产出来,最终信息总量大大超过了人们的需要,从而给人们在选择利用时造成困难[1]。信息过载问题在旅游业同样存在,网站等平台在运行过程中会记录大量日志(Log)数据,这些日志数据包含的用户行为数据,包括:页面浏览、购买、点击、评分和评论等[2],面对网络上日益丰富的用户和旅游信息,如何能快速有效地获取、挖掘其中的有效信息并为用户进行快速精准的推荐成为人们关注的问题。

研究综述(前人的研究现状及进展情况,不少于600字):

    通过整理分析相关文献中所采用的主要推荐算法,总结出目前常用的旅游推荐方法主要有以下五种:它们分别是基于知识的推荐、基于协同过滤的推荐、基于内容的推荐、基于人口统计的推荐以及混合型推荐[3]。随着旅游推荐方法的发展,越来越多人开始使用基于位置感知的推荐方法,这里主要介绍前面五种推荐方法的国内外现状。

基于知识的推荐是对用户和商品建模从而预测出用户可能感兴趣的商品,建模依据就是商品属性和用户画像。这个方法的优点是没有传统推荐系统所存在的冷启动问题,缺点则是获取到一定量的知识来支撑用户及商品知识库的构建是一件很困难的事情。相关的研究有:Dodwad[4]等在旅游推荐系统中基于本体为用户信息建立知识库,对概念加权能够提高推荐的准确率,更加细致的了解用户喜好。Morenol[5]等将协同过滤与本体相结合,旅游本[1]体通常包括用户特征、旅游景点信息及路线,对于新用户采用调查问卷的方式抽取用户特征,并与本体中用户特征关联建模,通过权重与用户特征信息的计算得出推荐列表。

基于协同过滤的推荐是根据相关用户的喜好程度进行推荐的,鉴于现实生活中人们做决定之前经常询问周围人意见作为参考,所以协同过滤推荐依靠的是系统中所有用户的群体智慧。目前关于协同过滤算法的子类算法有:基于用户、基于商品及基于模型。基于用户的协同过滤算法主要搜寻相似用户喜好的商品进行推荐;基于物品的协同过滤算法是搜寻用户自身喜好商品的相似商品进行推荐;基于模型的协同过滤则是在模型中输入用户数据进行训练以获得用户喜好﹐从而为用户产生推荐。对于用户来说,协同过滤的优点在于可以共同分享他人经验,使得搜索结果信息更加精确,还可以得到新信息。协同过滤推荐系统最早的应用是Tapestry[6]由 Goldberg 等提出,其初衷是筛选电子邮件中的垃圾邮件[7]。之后具有跨时代性改变的推荐系统是GroupLens[8],创新之处在于为用户进行推荐之前要求用户主动选择与其具有相似品位的已有用户,然后推荐系统根据被选择的用户喜好为目标用户进行推荐。近年来电子商务的兴起在一定程度上使得推荐系统应用更加广泛,并为研究推荐系统及其发展创造了条件。许多大型电商网站如国外的Amazon、eBay和国内的淘宝网、豆瓣、当当网等都采用基于协同过滤的推荐算法预测用户喜好以便于为用户提供符合其特性的个性化服务,国内外许多专家学者对该算法进行了不同程度的改进。Sarwar[9]等通过计算项目间的相似性改善算法的稀疏性问题,丰富推荐结果提高准确率。Hdioud[10]等在协同过滤推荐算法中通过对项目内容的相似性混合聚类,这样使得聚类结果更加精确,能够很好地解决该算法的新项目的冷启动问题[2]。秦川[11]等将知识图谱作为辅助信息与协同过滤推荐算法相结合,挖掘知识图谱中不同种类的信息以解决数据稀疏与冷启动的问题。

基于内容的推荐是指通过查找用户购买的商品信息,获取用户相关行为数据并分析之后对商品进行描述,通过所得描述结果为用户建立模型从而推荐相似商品。由于基于内容的推荐方法应用于旅游推荐时须获得用户的历史旅游经历及评价等信息,而这些信息在实际系统应用中很难捕捉到,在文献中一般将该方法结合基于知识的推荐算法及协同过滤算法使用[12]。

基于人口统计的推荐方法是通过分析用户填写的基本信息,将用户按属性分类,找到与目标用户相似的用户,并将相似用户喜欢的商品为目标用户做出推荐。

基于混合的推荐方法是在实际应用时根据需要将以上几种推荐方法混合使用,通过互补达到提高推荐率的效果。

推荐算法的发展已经有一定历史,但将其应用于旅游领域稍显晚一些。在国外,电子移动商务的研究始于上个世纪90年代末,为旅游推荐的发展创造了条件。谭建雄[13]指出国内电子商务的发展在近些年已有很大进展,且随着互联网及信息发展速度,未来电子商务会有更加广阔的前景。最早推荐算法在电影、音乐、书籍等方面的应用较为广泛,近些年有人研究关于旅游景点的推荐系统,也有关于帮助用户进行旅游路线的规划。目前为用户提供旅游线路的推荐一般根据获取的用户所在位置结合GIS及移动设备对用户周围相关旅游景点或旅游线路进行推荐。但其所受的限制条件较多,如天气、时间及用户的心情,这些都是不确定因素[14]。而基于位置的推荐离不开无线网络设备的支持,无线与移动网络标准于2002年首次被Erasala N和Yen DC定义[15],在之后开始研究如何提升无线网络传输设备的准确性、稳定性、及时性以及精确定位、多点传输[16]。更多研究侧重于旅游模型的构建,王显飞等[17]通过与用户会话实现人机交互,收集用户兴趣相关数据设计了基于约束的旅游推荐系统。朱全[18]设计的智慧旅游推荐系统是通过对关联规则加权进行数据挖掘。HuangYuxia[19]等人提出个性化旅游推荐系统,使用层次分析法对旅游景点内容的多属性进行分析,景点数据来源于网络并以旅游本体书的形式存储,之后通过贝叶斯网络对用户分类,分类依据为用户喜好,对用户提供同属性类别的推荐。

研究的目标和主要内容(不少于400字) 

本旅游推荐系统主要针对于目标目的地模糊不清或想探寻没去到过的不一样的旅游景点的游客,系统分为管理端和用户端,用户端为游客登录模块、热门推荐模块、景点评分模块、个性化推荐模块。用户初登录系统时会看到[3]热门推荐模块,该模块结果选自所有景点中用户评分较高的TOP景点,由于所有用户登录系统后所看到的推荐结果相同所以不具有个性化推荐功能。个性化推荐是通过对用户和景点信息进行相似度计算并结合协同过滤算法得到的针对于用户的专属推荐列表,每个用户的推荐结果都不一样。管理端只允许管理员登录,对用户和景点信息进行管理。在系统功能需求用例图的基础之上进行功能模块的详细设计,确定系统的模块及每个模块应该具备哪些功能。本旅游推荐系统旨在以简洁的操作界面为用户提供个性化的推荐,基于本旅游推荐系统的角色为用户和管理员,将系统分为用户端和管理端两大部分。确定系统各大模块之后需要对每个模进行详细的设计实现,下面将对每个模块逐一介绍,共分为七个模块。

1.用户注册登录模块:用户在使用本系统时首先进入的是注册登录界面,鼠标点击注册按钮同时界面跳转,必要信息填写完成后用户的信息将被系统发送到注册结果类,同时界面自动跳转到登录界面。

2.景点推送模块:用户登录系统成功之后会进入系统主界面,在主界面景点被按照所属类型分类展示,点击查看推荐查看景点推送。推送结果是根据用户注册信息时所填写的喜欢景点类型中挑选用户评分高的景点推荐,调用已排序的景点类实现,推送模块不具有个性化。

3.景点介绍和评分模块:在主界面的分类展示区中的景点可以点击进入详情页,详情页罗列了景点的详细信息,在详细信息页面用户可以对景点进行评分,分值范围为0-5分,用户的评分数据存储在用户-项目评分矩阵中。

4.个性化推荐结果模块:根据输入的用户评分数据经过改进后的协同过滤算法计算得出推荐结果,调用用户个性化推荐结果类。个性化推荐结果模块的时序。

5.用户反馈模块:用户可以提交关于推荐结果的意见反馈和关于系统其他方面的意见或建议,将被汇总到用户反馈表中,帮助改进系统,使得系统更加完善带给用户更好的体验。

6.用户信息管理模块:管理员登录系统之后可以选择对用户信息进行管理操作,包括对用户信息的添加、删除和查找,用户信息的修改由用户自己完成。需要调用用户信息管理类,将数据库中用户信息对应操作修改之后反馈到用户信息管理界面。

7.旅游景点信息管理模块:在管理员登录系统之后可以选择对景点信息进行管理操作,需要调用旅游景点信息管理类,将数据库中景点信息对应操作修改之后反馈到旅游景点信息管理界面。

拟采用的研究方法

   在对协同过滤的推荐算法在旅游的应用的研究基础上,通过查阅相关文献,对旅游景点和用户信息处理分类,结合开发工具为用户提供符合其特性的个性化旅游推荐服务,采用文献分析、数据集获取、理论研究、实际设计等多种研究方法,构建了基于协同过滤算法的旅游推荐系统。

文献分析法:研究初期,通过查询检索与推荐系统、协同过滤、旅游推荐等关键字相关的国内外文献,深入研究相关领域的背景和现状,并参考借鉴已公开的研究成果,在前人已有研究的基础上进行总结归纳,通过自己的思考对本研究方向有了深刻了解和认识,为创新性研究扩展了思路。对构建旅游推荐系统所用到的方法技术系统地研究之后,掌握了推荐技术原理及系统的构建流程。

数据集获取:利用数据集获取进行模型验证,通过查找相关资料,总结出将景点分为地文景区、水域景区、生物景区、历史遗迹景区、博物馆景区、主题公园景区、度假区、建筑物景区和民族民俗景区九种类别,根据景区介绍提取关键词将省份所有景区分类。分类完成之后根据指标评价体系确立数据采集内容,其中包括每个景点采集价格、月销量、用户评分、热度等指标。

实际程序设计:前期准备工作完成之后进行推荐系统的程序设计,搭建开发环境,使用Apache服务器、Mysql数据库,编程开发语言使用Java,根据详细设计完成系统开发,具备用户注册登录、用户浏览推荐、用户留言评分等功能。

研究工作的进度安排

2022年06月20日-07月15日,与指导老师沟通交流,完成毕业论文选题;

2022年07月16日-09月5日,搜集资料,查阅文献,完成开题报告;

2022年09月05日-09月27日,完成开题报告答辩;

2022年09月27-12月20日,定出需求分析文档,整相关资料并完成概要和详细设计;

2022年12月20日—2023年1月31日,进行编码工作及过程中的必要性测试;

2023年2月01日—02月06日,后期的联机调试和测试;

2023年2月07日—03月09日,总结毕业设计的整个过程,完成毕业设计论文初稿;

2023年03月10日—5月24日,修改毕业论文定稿,打印装订,参加答辩。

参考文献目录(作者、书名或论文题目、出版社或刊号、出版年月日或出版期号)

[1] 徐瑞朝,曾一昕.国内信息过载研究述评与思考[J].图书馆学研究,2017(18):21-25+60.

[2] 牛俊洁,崔忠伟,赵晨洁,王永金,吴恋.个性化旅游推荐技术研究及发展综述[J].物联网技

术,2020,10(03):86-88+91.

[3] 常亮,曹玉婷,孙文平,张伟涛,陈君同.旅游推荐系统研究综述[J].计算机科学,2017,44(10):

1-6.

[4] DODWAD P R,LOBO L. A context-aware recommender system using ontology based

approach for travel applications[J]. International journal of advanced engineering and na notechnology, 2014,1(10):8-12.

[5] MORENO A, VALLS A,ISERN D, et al. SigTur/E-destination: Ontology-based personalized

recommendation of tourism and leisure activities[J]. Engineering applications of artificialintelligence, 2013,26(1): 633-651.

[6] Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM,1992,35(12): 61-70.

[7] Dada E G, Bassi J S, Chiroma H, et al. Machine learning for email spam filtering: review, approaches and open research problems[J]. Heliyon, 2019,5(6): e01802.

[8] Konstan J A,Miller B N, Maltz D, et al. GroupLens: applying collaborative filtering to

Usenet news[J]. Communications of the ACM,1997,40(3): 77-87.

[9] Sarwar B,Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation

algorithms[C]/Proceedings of the 10th international conference on World Wide Web.2001;285-295.

[10] Hdioud F,Frikh B,Benghabrit A, et al.Collaborative filtering with hybrid clustering

[11] 秦川,祝恒书,庄福振,郭庆宇,张琦,张乐,王超,陈恩红,熊辉.基于知识图谱的推荐系统研究

综述[J].中国科学:信息科学,2020,50(07):937-956.

[12] Moreno A,Valls A,Isern D, et al. Sigtur/e-destination: ontology-based personalized recommendation of tourism and leisure activities[J]. Engineering applications of artificialintelligence,2013,26(1): 633-651.

[13] 谭建雄.旅游电子商务研究进展与前端[J].成都理工大学学报(社会科学版)2004,12(1);66-70.

[14] 马磊.基于智能解决方案的自助旅游系统[J].计算机系统应用,2017,26(03);57-62.

[15] Erasala N, Yen D C. Bluetooth technology: a strategic analysis of its role in global 3G wireless communication era[J].Computer Standards & Interfaces, 2002,24(3):193-206.

[16] Ling F, Parthasarathy R. Transmission Control Technology in Computer Wireless Network Communication[J].Insight-Information, 2020,2(1).

[17] 王显飞,陈梅,李小天.基于约束的旅游推荐系统的研究与设计[J].计算机技术与发展,2012,22(02):141-145.

[18] 朱全.基于加权关联规则挖掘的智慧旅游推荐系统的设计与实现[D].湖北:武汉科技大学,2004.

[19] Huang Y, Bian L. Bayesian network and analytic hierarchy process based personalized

recommendations for _tourist attractions over  the Intemet[J]. ExpertSystems with Applications,2009,36(1):933-943.

指导教师意见

                                     签名:           年   月   日

教研室主任意见

                                     签名:           年   月   日

 

3常亮,曹玉婷,孙文平,张伟涛,陈君同.旅游推荐系统研究综述[J].计算机科学,2017,44(10):1-6.

4 DODWAD P R,LOBO L. A context-aware recommender system using ontology based approach for travel applications[J]. International journal of advanced engineering and na notechnology, 2014,1(10):8-12.

5 MORENO A, VALLS A,ISERN D, et al. SigTur/E-destination: Ontology-based personalizedrecommendation of tourism and leisure activities[J]. Engineering applications of artificialintelligence, 2013,26(1): 633-651.

6 Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM,1992,35(12): 61-70.

7 Dada E G, Bassi J s, Chiroma H, et al. Machine learning for email spam filtering: review,

approaches and open research problems[J].Heliyon, 2019,5(6): e01802.

8 Konstan J A,Miller B N,Maltz D, et al.GroupLens: applying collaborative filtering to

Usenet news[J].Communications of the ACM,1997,40(3): 77-87.

9 Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation

algorithms[C]//Proceedings of the 10th international conference on World Wide Web. 2001:285-295.

10 Hdioud F,Frikh B,Benghabrit A, et al. Collaborative filtering with hybrid clusteringintegrated method to address new-item cold-start problem[M].Intelligent distributedcomputing IX. Springer, Cham, 2016: 285-296.

11秦川,祝恒书,庄福振,郭庆宇,张琦,张乐,王超,陈恩红,熊辉.基于知识图谱的推荐系统研究

综述[J].中国科学:信息科学,2020,50(07):937-956.

12 Moreno A,Valls A,Isern D, et al. Sigtur/e-destination: ontology-based personalized recommendation of tourism and leisure activities[J]. Engineering applications of artificialintelligence,2013,26(1): 633-651.

13谭建雄.旅游电子商务研究进展与前端[J].成都理工大学学报(社会科学版)2004,12(1);66-70.

14 马磊.基于智能解决方案的自助旅游系统[J].计算机系统应用,2017,26(03);57-62.

15Erasala N, Yen D C. Bluetooth technology: a strategic analysis of its role in global 3G wireless communication era[J].Computer Standards & Interfaces, 2002,24(3):193-206.

16 Ling F, Parthasarathy R. Transmission Control Technology in Computer Wireless Network Communication[J].Insight-Information, 2020,2(1).

17]王显飞,陈梅,李小天.基于约束的旅游推荐系统的研究与设计[J].计算机技术与发展,2012,22(02):141-145.

18朱全.基于加权关联规则挖掘的智慧旅游推荐系统的设计与实现[D].湖北:武汉科技大学,2004.

19 Huang Y, Bian L. Bayesian network and analytic hierarchy process based personalized

recommendations for _tourist attractions over  the Intemet[J]. ExpertSystems withApplications,2009,36(1):933-943.

<think>好的,我现在需要帮助用户找到关于旅游推荐系统开题报告的资料或模板。首先,我应该先看看用户提供的引用内容,看看有没有相关的信息可以利用。 用户提到了引用[1],里面提到一个基于SparkStreaming和Kafka的旅游推荐系统,还有系统架构和实时分析用户行为的部分。这可能对开题报告中的系统设计部分有用,特别是技术选型和架构设计。另外,引用[3]提到了微信小程序的旅游景点系统,可能涉及前端实现和数据展示,这部分可以作为用户界面设计的参考。 接下来,用户需要的是开题报告的模板或资料。通常开题报告包括选题背景、研究意义、国内外研究现状、研究内容方法、技术路线、预期成果、进度安排等部分。我需要根据用户提供的引用内容,结合常见的开题报告结构,给出一个结构化的建议。 比如,在选题背景中,可以引用用户提到的信息爆炸时代和旅游行业的需求,引用[1]中的内容作为支撑。研究意义部分可以强调个性化推荐的重要性,同样引用[1]。技术路线部分,可以结合SparkStreaming、Kafka等技术,以及可能的可视化工具,如引用[1]中的Hive和引用[3]中的微信小程序。 另外,用户可能需要一些具体的实现细节,比如数据来源、算法选择、系统模块划分等。这里可能需要参考引用[1]的系统架构部分,分模块描述。同时,引用[3]提到的Django项目和微信小程序可以作为前后端技术的例子。 还要注意用户提到的“相关系统”部分,可能需要比较现有的旅游推荐系统,分析它们的优缺点,从而突出自己研究的创新点。比如,引用[1]的实时性,引用[3]的小程序便捷性,都是可以提到的点。 用户可能还关心参考文献和资料获取,所以需要整理相关的参考文献,并指导如何获取源码或示例,如引用[3]中提到的源码获取方式。 最后,生成的相关问题需要覆盖开题报告的各个部分,比如技术选型、数据来源、创新点、文献综述等,帮助用户进一步深入思考。 在整理这些信息的时候,要确保使用正确的中文表达,结构清晰,并且自然地插入引用标记。同时,避免使用Markdown格式,保持回答的简洁和易读。</think>### 旅游推荐系统开题报告框架资料建议 #### 一、选题背景意义 1. **背景** - 信息爆炸时代下,用户面临旅游信息过载问题,个性化推荐需求显著[^1]。 - 旅游业竞争加剧,精准推荐可提升用户体验企业收益(参考[1]中“旅游行业作为服务业的重要组成部分...”)。 2. **意义** - 解决传统推荐系统实时性不足问题(如引用[1]的SparkStreaming+Kafka实时分析方案)。 - 结合多源数据(用户行为、景点流量、天气等)提升推荐准确性。 --- #### 二、国内外研究现状 - **国内**:基于协同过滤的景区推荐系统较多,但实时数据处理能力较弱(可对比引用[1]的实时架构)。 - **国外**:Netflix、Airbnb等平台融合深度学习用户画像技术,但旅游场景适配性不足(需引用相关文献补充)。 --- #### 三、研究内容方法 1. **核心研究内容** - **数据层**:整合Hive数据仓库中的用户行为、景点客流量、评分等数据(引用[1])。 - **算法层**:设计混合推荐模型(协同过滤+内容推荐+实时反馈)。 - **系统实现**:基于微服务架构,前端使用微信小程序(引用[3]),后端采用SparkStreaming处理实时数据流[^1]。 2. **技术路线** ```mermaid graph TD A[数据采集] --> B(Kafka实时流) B --> C(SparkStreaming处理) C --> D{Hive数据仓库} D --> E[推荐算法模型] E --> F(微信小程序可视化) ``` --- #### 四、预期成果创新点 1. **成果** - 实现支持实时推荐的旅游系统原型(参考[1][3])。 - 发布1-2篇核心期刊论文或专利申请。 2. **创新点** - **实时性优化**:通过Kafka+SparkStreaming实现毫秒级响应(引用[1])。 - **多维度数据融合**:结合客流量预测用户偏好(引用[1]中的“景点客流量预测”模块)。 --- #### 五、参考文献资料获取 1. **推荐文献** - [^1]中提到的SparkStreaming+Kafka架构设计。 - [^3]中微信小程序Django的实现案例。 2. **源码模板** - 开题报告模板可参考[^2]中的“论文写作思路”部分。 - 微信小程序前端源码获取方式见末尾(需联系作者)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值