学生姓名 | 班级学号 | 指导教师 | |||||
毕业设计(论文)题目 | 小红书信息可视化分析与智能推荐系统设计 | ||||||
选 题 的 目 的 和 意 义 | 基于小红书信息可视化与智能推荐系统,智能推荐系统分析现有的信息,对每个用户进行详细的、个性化的描述,并对他们的偏好和行为进行预测,进行文章推荐,在数以百万计的用户行为数据的支持下,采集用户评论数据这种方法可以为直观的关联提供强有力的统计支持。同时推荐系统通过用户以前的行为并预测他们目前对特定领域的偏好,为用户提供个性化的服务支持。协同过滤算法已经自然而然地应用于推荐系统的开发,以提高预测的准确性,解决数据稀少和冷启动问题。也直接支持研究人员和专业人士更好地了解使用人工智能的推荐系统领域的当前发展和新方向。 | ||||||
国 内 外 研 究 现 状 及 存 在 的 问 题 | 在国内竞争激烈的市场中,企业要提供直接吸引个人客户需求的产品和服务是具有挑战性的。个性化的服务有助于解决一个主要的问题,信息过载,从而使用户的决策过程更容易,并提高用户体验。这些个性化服务中使用的推荐系统最早建立于20年前,是通过采用其他人工智能(AI)领域的技术和理论进行用户分析和偏好发现而开发的。在过去的几年里,成功的人工智能驱动的应用有了很大的增长。成功的案例包括Deepmind的AlphaGo,这个人工智能驱动的程序在围棋比赛中战胜了专业的人类棋手,还有自动驾驶汽车,以及计算机视觉和语音识别领域的其他应用。这些在人工智能、数据分析和大数据方面的持续进步,为推荐系统提供了一个巨大的机会,以拥抱人工智能的惊人成就。但推荐在软件里有不同的应用场景,比如信息流推荐、文章详情相关推荐、搜索的个性化词云等等,如果大量相似的文章被分发到相关推荐中,那肯定是没问题的,但如果仅仅是依靠文本语义的相似在信息流的主路径中被反复推荐。 | ||||||
主 要 研 究 内 容 | 主要研究内容的方向是,对小红书网站信息进行爬取,然后再对采集下来的数据进行信息统计,按照确定的数据分析和框架内容,有目的的收集、整合相关数据,对收集到的数据进行加工、整理,以便开展数据分析,它是数据分析前必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,也在一定程度上取决于数据仓库的搭建和数据质量的保证。通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规律进行数据分析可视化之后对特定用户人群进行智能推荐。 | ||||||
研 究 方 法 、 步 骤 和 措 施 等 |
2.按快捷键F12,查看网页元素,如果没有反映,刷新网页即可。 3.找到并点击上面页面中的“网络”,一般来说,按F12后会自动定位到“网络”这个选项。 4.在“过滤URL”框中输入“comment”,实现对URL的筛选,由于我们需要的是用户的评论数据,所以输入的关键词是comment。找到“方法”列值为“POST”的那两个URL,点击其中任意一个,会弹出右侧对话框。 5.将爬取的单个网页粘贴到python编译器中,如Pycharm,使用光标来发现层次关系。最后根据目标导向,我们需要的核心数据是用户的评论,结合光标来发现网页内容的层次关系。 6.依靠爬取数据可以分析 数据适合的可视化图形。对于推荐系统方面,可以采取协同过滤算法对小红书内容进行推荐。 | ||||||
参 考 文 献 | [1] Resnick P,Iacovou N, Suchak M, et al. GroupLens: an open architecture for collaborativefiltering of netnews[C] Proceedings of the 1994 ACM Conference on ComputerSupported Cooperative Work, Oct 22-26, 1994. New York, NY, USA: ACM, 1994:175-186. [2] Resnick P, Varian H R. Recommender systems[J].Communications of the ACM, 1997, 40(3): 56-58. [3] G. Linden, B. Smith, and J. York, “Amazon.comRecommendations: Item-to-Item Collaborative Filtering,” IEEE InternetComputing, vol. 7, no. 1, 2003, pp. 76–80. [4] Linden G, Smith B, York J. Amazon.comrecommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing,2003, 7(1): 76-80. [5] Adomavicius G, Tuzhilin A. Toward the nextgeneration of recommender systems: a survey of the state-of-the-art and possibleextensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6): 734-749. [6] Cremonesi P, Tripodi A, Turrin R. Cross-DomainRecommender Systems.[C] IEEE, International Conference on Data MiningWorkshops. IEEE, 2012:496-503. [7] Huiji Gao, Jiliang Tang, Huan Liu. Personalizedlocation recommendation on location-based social networks[J]. 2014:399-400. [8] Said A. Replicable Evaluation of RecommenderSystems[C] ACM Conference on Recommender Systems. ACM, 2015:363-364. [9] Hopfgartner F, Kille B, Heintz T, et al.Real-time Recommendation of Streamed Data[C] ACM Conference on RecommenderSystems. ACM, 2015:361-362. [10] Karatzoglou A, Hidasi B. Deep Learning forRecommender Systems[C] the Eleventh ACM Conference. ACM, 2017:396-397. [11] Simon Funk. Funk-SVD [EB/OL]. http://sifter.org/~simon/journal/20061211.html,2006-12-11 [12] 朱扬勇, 孙婧. 推荐系统研究进展[J]. 计算机科学与探索, 2015, 9(5):513-525. [13] 杨阳, 向阳, 熊磊. 基于矩阵分解与用户近邻模型的协同过滤推荐算法[J]. 计算机应用, 2012,32(2):395-398. [14] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012. | ||||||
指 导 教 师 意 见 | 指导教师签字: 年 月 日 | ||||||