设计(论文)题目 | 厦门租房数据统计分析 | |||||
学生姓名 | 学号 | 指导教师 | 徐焕 | |||
为满足我国大量流动人口的住房需求,国家出台的各项相关政策推动着住房租赁市场的发展。福建厦门凭借天然的地理环境和人文特点等宜居条件,在2020年的房屋交易价格排名达到了全国第四名,仅次于北京深圳和上海。国家统计局数据显示,2020年前三季度,厦门居民人均可支配收入44887元。相当于月均4987元。据中国房协统计数据,在厦门租房和买房的每平方米的住宅价格相差大于1005倍,租房成为了更具有效益性价比的选择。数据显示,厦门平均租房价格在1978元左右,约占可支配收入的39.7%。而为了更好应对租房需求,提供适合的房源决策,关于厦门租房数据统计的有效分析表现出了现实活力。通过收集厦门租房相关数据,对统计的数据进行分析预测,最终通过图表等形式进行可视化展示,可以实现对厦门租房分布的地图热力分布、厦门各区的租房数据分布统计、户型数据统计、各房屋配置条件对租金价格的影响相关性分析、房屋配置内容的关键字分析、租金价格预测等功能。 厦门租房数据统计分析的结果在一方面提供给租房者全厦门出租房的信息比对,了解到当前的租房行情。另一方面,对出租者来说,也能通过此次分析调整房源配置,从而提供更好的出租房屋,实现更大的利益。同时,政府机关也可以通过此次分析对相应政策进行辅助性调整,优化公租房政策、解决优秀人才引进计划中的住房分配问题等等,本篇论文利用爬虫获取数据、通过一定市数据可视化技术展示租房统计分析数据,通过建立模型预测租金价格,使得读者更加全面高效的了解到有效的信息,提高了分析数据的科学性,准确性和可读性,具有十分重要的现实意义。 | ||||||
2.主要研究内容:
数据统计分布模块:对厦门出租房数量、位置分布进行分析;利用条形图、饼图,折线图等展示户型数量分析、平均租金分析、面积区间分析、楼层分布分析、朝向分布分析等数值型数据的分析结果。 数值类型相关系分析模块:分析数值型数据如面积、楼层、室数、厅数、卫数等与租金价格的相关性。 房屋属性分类分析模块:对分类型数据与租金的关系进行分析,如有无电梯,用水,用电,车位,整租合租等数据对租金的影响。 文本词云信息关键字展示模块:对文本型数据房源描述、房屋配置等进行关键字提取分析,展示词云关键字。 房屋租金预测模块:训练数据,建立模型对数据进行预测,通过提供配置条件预测房屋租金价格,方便租房决策。 2)可视化数据展示部分主要以网页形式进行设计,将各个模块中的分析结果,如热力图,饼图,气泡图等进行综合展示,增强数据可读性,提升数据分析结果展示的友好度。 系统架构图 | ||||||
3. 完成设计(论文)的条件、方法及措施,包括实验设计、调研计划、资料收集、参考文献等内容: 1)了解毕业设计选题的背景和解决的问题,确定选题目的。 2)掌握本次毕业设计的所需相关技术,如数据获取技术、数据分析技术、前端可视化技术。 3)按照数据分析的流程一步步完成本次毕业设计的课题,将理论研究与实际应用问题相结合的目的。 实验设计: 1)数据统计分布模块:实现热力图展示为厦门出租房数量、位置分布分析;实现利用条形图、饼图,折线图等展示户型数量分析、平均租金分析、面积区间分析、楼层分布分析、朝向分布分析等数值型数据的分析结果。 2)数值类型相关系分析模块:实现相关系分析,利用回归分析,分析数值型数据如面积、楼层、室数、厅数、卫数等与租金价格的相关性,并用散点图展示。 3)房屋属性分类分析模块:实现以气泡图的形式展示分类型数据与租金的关系,如有无电梯,用水,用电,车位,整租合租等数据对租金价格的影响。 4)文本词云信息关键字展示模块:实现文本词云展示,对文本型数据房源描述、房屋配置等进行关键字提取,展示词云关键字。 5)房屋租金预测模块:实现房屋租金预测,通过输入房屋配置条件,预测该条件下的租金价格。 论文查阅资料主要方式:
参考文献: [1]echarts.apache.org开发文档[OL]. [2]中国大学mooc网Python网络爬虫及信息提取[OL]. [3]张若曦,贾士军.广州市住宅租金影响因素的研究[J].工程管理学报,2014,28(06):118-123. [4]张磊,谢梅.房屋内部属性与房价关系的探究——基于随机森林方法[J].现代商业,2019(22):59-61. [5]王洪强,李小雪,张英婕.上海市住宅租金价格空间分异格局及其影响因素分析[J].管理现代化,2019,39(05):95-100. [6]雍凯. 随机森林的特征选择和模型优化算法研究[D].哈尔滨工业大学,2008. [7]杭琦,杨敬辉.机器学习随机森林算法的应用现状[J].电子技术与软件工程,2018(24). [8]Ashwin Pajankar.Practical Python Data Visualization.Apress, Berkeley, CA,2021. [9]Fabio Nelli.Python Data Analytics.Apress, Berkeley, CA,2018. [10]王子毅,张春海.基于ECharts的数据可视化分析组件设计实现[J].微型机与应用,2016,35(14):46-48+51. [11]郭茹梦. 北京市房租价格预测及影响因素分析[D].北京工业大学,2019. |
第1-3周:通过知网或其他相关平台查阅与论文有关的文献资料,准备相关数据,了解学习相关技术如爬虫,数据分析方法和预测模型等,完成开题报告。 第4-9周:对数据进行整理清洗,对整理好的数据进行分析处理,训练预测模型,并分析数据处理结果,完成相关文献阅读整理。 第10-13周:实现数据可视化的展示调试,攥写论文正文并完善。 14-15周:最后对论文进行完善,整理打印毕业设计论文,准备答辩。 |
5.指导教师的意见及建议(含是否同意开题):
指导教师签名: 年 月 日 |
注:此表前四项由学生填写后交指导教师签署意见,否则不得开题;此表作为毕业设计(论文)评分的依据。此表存入学生毕业设计(论文)档案袋。