学号 | 学生姓名 | 系部 | 专业 | ||||
年级 | 指导教师 | 职称 | 开题时间 | 月 日 | |||
论文(设计)题目 | 基于聚类算法的信用卡用户分析 | ||||||
选题意义、价值和目标: 随着经济的发展,我国信用卡市场逐步壮大并日益繁荣。近几年信用卡逐渐成为我国居民个人消费使用最为频繁的支付工具之一。信用卡属于一种贷款,这也构成了客户对于开证银行的债务关系,所以信用卡开证行对于用户的基本信息以及对于其信用价值评估也成为了重要的一环,评估的结果可以用来分析客户的最大信用额度几何、客户是否能够成功开通信用卡业务,以及还款的时间比例等等是否合理。因此商业银行利用先进的数据挖掘技术对客户基本信息分析进行客户分类,区别不同的客户群体,然后针对不同客户群体,采取不同的发卡方式,营销策略、风险控制举措这些举动都是十分有必要的,也是对信用卡产品获得市场份额有巨大帮助作用的。 通过对信用卡分类对其客户进行分类,可以降低风险,给高贡献、低风险的客户提额的机会,少给或者尽量不给低贡献、高风险的用户额度,也避免后期的纷争。 聚类是一种无监督的学习方法,K-Means 是一种广泛使用的聚类技术,使用起来速度快且效果好,更重要的是,在类似交易数据的结构化数据上,每一条数据都可以被看作为一个特征向量,向量代表一条用户的行为描述。K-Means的目标是把距离相近的样本全部划分成一个集群,本文使用 K-Means 作为基础的聚类算法对交易行为进行划分。合理选取K值就是数据的真实聚类数。 本文通过数据分析方法和聚类算法,根据已知的信用卡数据给出信用卡分类,从而给出客户画像,给出银行的业务建议,针对具体客户给出不同的营销方案。 | |||||||
课题研究方案:
3.PCA主成分分析:对数据进行降维处理将n维特征映射到k维上(k<n),k维是全新的正交特征;这k维特征为主成分,使用信用卡重新构造出来的k维特征。 4.对结果进行图形化的方式展示,查看各类簇质心在各个维度上的表现,并且根据结果给出客户画像,给出业务建议。 | |||||||
写作提纲: 摘要 一、绪论 1、研究背景及意义 2、国内外研究现状 3、研究主要内容 4、论文结构 二、数据处理 1、数据介绍 2、异常值处理 3、数据标准化 三、聚类分析 1、Kmeans聚类的思想及原理 2、Kmeans聚类的算法 3、Kmeans模型在实验数据的实现 四、PCA降维 1、主成分分析法(PCA)思想及原理 2、PCA的算法 3、PCA在实验数据的实现 五、模型结果与分析 1 、聚类结果分析 2、PCA结果分析 3、可视化分析 2、模型应用分析 六、总结与展望 参考文献 致谢 | |||||||
主要参考文献: [1]《机器学习》周志华 [2]《Machine Learning Yearning》吴恩达 [3]《动手学深度学习》阿斯顿·张,李沐 [4]《统计学习方法》 李航 [5]华婷婷. K-means聚类算法研究[J] 黄山学院学报,Vol15.No05 Otc.2013:17-18 [6]F Dzikrullah,NA Setiawan,S Sulistyo. Implementation of scalable K-Means++ clustering for passengers temporal pattern analysis in public transportation system (BRT Trans Jogja case study) [7]B Bahmani,B Moseley,A Vattani,R Kumar,S Vassilvitskii. Scalable K-Means++ [8]杨俊闯, 赵超.K-Means 聚类算法研究综述[J].《计算机工程与应用》 2019年第23期 P7-14,63页 [9]刘子豪.基于降维方法的信用风险评估模型研究及其应用.硕士毕业论文 | |||||||
是否可以进入研究和论文(设计)撰写阶段的意见: 指导教师: 年 月 日 |