基于大数据的智慧社区建设系统的设计与实现

  

  

第1章 绪论

1.1课题背景及意义

1.2国内外研究现状

1.2.1国内外研究现状

1.3研究的主要内容

第2章 系统需求分析与可行性设计

2.1功能需求分析

2.1.1系统管理员用例

2.1.2用户用例

2.2 所需技术分析

2.2.1  Flask

2.2.2 MySQL

2.3系统可行性

2.3.1经济可行性分析

2.3.2技术可行性分析

2.3.3操作可行性分析

第3章 系统功能总体设计

3.1设计目标

3.2 智慧社区爬虫设计

3.3 智慧社区分析程序设计

第4章 系统详细分析与设计

4.1 开发环境与配置

4.2 数据库的设计

4.3 系统功能模块实现

4.4 本章小结

第5章 系统功能实现与运行测试

5.1后台登录页面

5.1.1功能概要

5.1.2详细描述

5.2信息管理

5.2.1智慧社区信息管理

5.2.2 智慧社区可视化看板功能

第6章 总结与展望

6.1 系统开发遇到的问题

6.2展望

参考文献

致谢

基于大数据的智慧社区建设系统的设计与实现

摘要:本文研究旨在探讨大数据在智慧社区建设系统中的应用,以提供数据支持和解决方案。研究目标包括探讨大数据在智慧社区建设中的关键技术和应用现状,分析其优势和挑战,提出基于大数据的智慧社区建设框架和运行模式,以及探讨大数据在智慧社区建设中的应用案例和效果评估。

首先,本研究将深入探讨大数据在智慧社区建设中的关键技术和应用现状,包括数据收集、存储、处理、分析和应用等方面。同时,还将分析大数据在智慧社区建设中的优势和挑战,其中包括数据隐私保护、数据安全性、数据可靠性等方面。

其次,为了更好地应用大数据技术推进智慧社区建设,本研究将提出基于大数据的智慧社区建设框架和运行模式,包括数据采集、数据分析、数据挖掘、数据可视化等环节,以便更好地管理社区信息和资源,提升社区发展水平和居民生活品质。

最后,本研究还将探讨大数据在智慧社区建设中的应用案例和效果评估,包括基于大数据技术的社区安全防范、智慧交通管理、环境监测等方面的应用案例,并通过实证分析评估这些应用的效果和价值。

总之,本文旨在深入探讨大数据在智慧社区建设中的应用,为决策提供数据支持和解决方案,推动智慧社区建设和管理水平的不断提升。

关键词:智慧社区;Flask; Python;建设系统

Design and Implementation of a Smart Community Construction System Based on Big Data

Abstract: This article aims to explore the application of big data in smart community construction systems, in order to provide data support and solutions. The research objectives include exploring the key technologies and application status of big data in the construction of smart communities, analyzing its advantages and challenges, proposing a framework and operating mode for smart community construction based on big data, and exploring the application cases and effectiveness evaluation of big data in smart community construction.

Firstly, this study will delve into the key technologies and application status of big data in the construction of smart communities, including data collection, storage, processing, analysis, and application. At the same time, we will also analyze the advantages and challenges of big data in the construction of smart communities, including data privacy protection, data security, data reliability, and other aspects.

Secondly, in order to better apply big data technology to promote the construction of smart communities, this study will propose a framework and operating mode for smart community construction based on big data, including data collection, data analysis, data mining, data visualization and other links, in order to better manage community information and resources, improve community development level and residents' quality of life.

Finally, this study will also explore the application cases and effectiveness evaluations of big data in the construction of smart communities, including application cases based on big data technology in community safety prevention, smart traffic management, environmental monitoring, etc., and evaluate the effectiveness and value of these applications through empirical analysis.

In summary, this article aims to explore the application of big data in the construction of smart communities, provide data support and solutions for decision-making, and promote the continuous improvement of the construction and management level of smart communities.

Keywords: Smart community; Flask; Python; Construction system

第1章 绪论

1.1课题背景及意义

智慧社区建设是指利用信息技术和大数据等现代科技手段,提升社区管理效率和居民生活质量的一种新型社区管理模式。其目标是通过收集、整合和分析大量的数据,为社区居民提供更便捷、高效、安全和舒适的服务。

研究背景方面,智慧社区建设系统的发展得益于以下几个方面:

大数据技术的发展:随着信息技术的快速发展和互联网的普及,社区中产生的数据呈爆发式增长。大数据技术的应用能够对这些数据进行高效地存储、处理和分析,从而为社区管理者提供决策支持和优化资源配置。

人口老龄化和城市化进程:随着人口老龄化和城市化进程的加速,社区管理面临着越来越多的挑战。智慧社区建设系统可以通过智能化的设备和服务,提供更好的医疗、养老、安防等服务,满足不同年龄层次居民的需求。

环境可持续性发展:智慧社区建设系统可以通过监测和管理能源、水资源、垃圾处理等方面的数据,提高资源利用效率,减少能源浪费和环境污染,促进社区的可持续发展。

社区管理效率的提升:传统的社区管理方式存在信息不对称、管理效率低下等问题。智慧社区建设系统可以通过数据共享和信息化管理,提升社区管理的效率和服务质量,实现居民与管理者之间的互动和沟通。

综上所述,基于大数据的智慧社区建设系统的研究背景主要源于信息技术的发展、人口老龄化和城市化进程、环境可持续性发展以及社区管理效率的提升需求。这些因素共同推动了智慧社区建设系统的发展与研究。

智慧社区建设系统是指利用大数据、人工智能和物联网等技术手段,对社区内的各种资源进行集中管理和优化调度,提高社区的管理效率和居民的生活质量。在这一过程中,大数据发挥着重要的作用。

提升社区管理效率:通过收集和分析大量的社区数据,如居民信息、交通流量、环境监测等,可以帮助社区管理者更好地理解社区的运行状态,及时发现问题并采取相应的措施。同时,结合人工智能和物联网技术,可以实现自动化的管理和智能化的决策,提高社区管理效率,降低管理成本。

优化资源配置:智慧社区建设系统可以通过大数据分析,精确了解社区内资源的供需状况,如停车位、公共设施等,从而实现资源的合理配置和优化利用。例如,根据交通流量和停车需求的分析,可以实时调整停车位的分配,避免拥堵和资源浪费。

提高居民生活品质:智慧社区建设系统可以为居民提供更便捷、安全和舒适的生活环境。通过大数据分析,可以提供个性化的服务,如智能家居控制、智能健康监测等,满足居民个性化的需求。同时,基于大数据的安防系统可以及时发现和应对潜在的安全风险,提高社区的安全性。

推动城市可持续发展:智慧社区建设系统可以帮助城市实现可持续发展目标。通过大数据分析,可以了解社区内能源的消耗和排放情况,优化能源利用方式,减少能源浪费和环境污染。同时,智能交通管理系统可以优化交通流量,减少交通拥堵和尾气排放,改善空气质量。

总之,基于大数据的智慧社区建设系统具有重要的研究意义,可以提升社区管理效率,优化资源配置,提高居民生活品质,推动城市可持续发展。这一研究方向对于构建智慧城市和提升城市管理水平具有重要意义。

1.2国内外研究现状

1.2.1外研究现状

智慧社区建设是指利用信息技术和大数据等先进技术手段,对社区进行管理、服务和创新,提高社区居民的生活质量和幸福感。下面是关于智慧社区建设系统在国内外的研究现状的一些概述:

国内研究现状: 在国内,智慧社区建设系统的研究与实践已经逐渐展开,并取得了一些成果。以下是一些主要方面的研究现状:

基础设施建设:智慧社区建设系统包括物联网、云计算、大数据等基础设施的建设。国内的研究主要集中在基础设施的搭建和应用研究上,如智能传感器网络、智能家居设备等。

社区治理与管理:智慧社区建设系统可以提供更加高效的社区治理与管理手段。国内的研究关注社区居民参与度的提升、社区资源的整合和优化、社区安全的保障等方面。

服务创新与便民化:智慧社区建设系统可以通过提供一系列便民服务和创新服务来提升社区居民的生活质量。国内的研究主要关注社区服务平台、智慧交通、智慧医疗等方面。

国外研究现状: 在国外,智慧社区建设系统的研究和实践也得到了广泛的关注和应用。以下是一些国外研究的主要方向:

社区参与与治理:国外研究侧重于如何促进社区居民的参与度和自治能力的提升,通过数字化平台和社交媒体等工具来促进居民之间的互动和合作。

可持续发展:国外的研究关注智慧社区的可持续发展,包括节能减排、可再生能源利用、废物管理等方面,以实现环境友好型社区。

社区安全与紧急响应:国外的研究注重智慧社区建设系统在社区安全和紧急响应方面的应用,例如智能监控系统、紧急救援系统等。

总体而言,国内外的研究都在探索如何借助大数据和信息技术,提升社区的治理水平、优化资源配置、改善居民生活等方面。然而,智慧社区建设系统仍然处于发展的初级阶段,需要进一步研究和实践来解决技术、隐私、安全等方面的挑战。

1.3研究的主要内容

基于大数据和大数据技术,设计和实现一个智慧社区管理系统。 该系统通过收集和分析社区数据等,运用机器学习算法或统计模型进行分类管理,为管理部门提供可靠的决策依据。

1.深入了解大数据在智慧社区建设中的应用现状和发展趋势;

2.系统分析大数据在智慧社区建设中的优势和挑战;

3.提出基于大数据的智慧社区建设框架和运行模式;

4.探讨大数据在智慧社区建设中的应用案例和效果评估,为实际应用提供参考。

第2章 系统需求分析与可行性设计

2.1功能需求分析

智慧社区分析系统中主要有两类用户:管理员、普通人员。每一类用户都有自己的权限,不同用户登陆系统后显示的菜单栏是不同的,显示每一类用户所对应的模块。

2.1.1系统管理员用例

管理员用例主要包括注册登录、基本信息管理、历史数据管理、智慧社区分析等模块,如图2.1所示。

表2-1 管理员登陆

描述

描述

用户输入用户名和密码之后,系统判断是管理员角色,登录智慧社区分析系统

基本流程

  1. 管理员进入管理员登陆页面
  2. 输入管理员用户名和密码之后,点击登陆按钮
  3. 系统验证管理员信息正确性
  4. 验证成功后,系统切换至管理员主页面

返回数据

管理员登陆结果集

表2-2基本信息管理

描述

描述

登录成功,进入系统的基本信息管理界面,可以对基本信息管理进行操作

基本流程

  1. 管理员登录成功进入系统
  2. 进入基本信息管理界面
  3. 对基本信息管理进行操作
  4. 确认是否进行操作
  5. 操作成功提示
  6. 显示操作之后的信息

返回数据

基本信息结果集

表2-3 智慧社区管理

描述

描述

管理员可以进入天气管理界面,可以对智慧社区信息管理进行操作

基本流程

  1. 管理员登录成功进入系统
  2. 进入天气管理界面
  3. 对智慧社区信息管理进行操作
  4. 确认是否进行操作
  5. 操作成功提示
  6. 显示操作之后的信息

返回数据

天气结果集

表2-4 智慧社区分析

描述

描述

管理员可以进入智慧社区分析界面,可以对智慧社区分析进行操作

基本流程

  1. 管理员登录成功进入系统
  2. 进入智慧社区分析界面
  3. 对智慧社区分析进行操作
  4. 确认是否进行操作
  5. 操作成功提示
  6. 显示操作之后的信息

返回数据

智慧社区分析结果集

2.1.2用户用例

用户主要包括注册登录、基本信息查询、历史数据查询、智慧社区分析等模块,如图2.5所示。

表2-5 用户登陆

描述

描述

用户输入用户名和密码之后,系统判断是管理员角色,登录智慧社区分析系统

基本流程

  1. 管理员进入管理员登陆页面
  2. 输入管理员用户名和密码之后,点击登陆按钮
  3. 系统验证管理员信息正确性
  4. 验证成功后,系统切换至管理员主页面

返回数据

管理员登陆结果集

表2-6个人基本信息管理

描述

描述

登录成功,进入系统的基本信息管理界面,可以对基本信息管理进行操作

基本流程

  1. 管理员登录成功进入系统
  2. 进入基本信息管理界面
  3. 对基本信息管理进行操作
  4. 确认是否进行操作
  5. 操作成功提示
  6. 显示操作之后的信息

返回数据

基本信息结果集

表2-7 智慧社区历史查询

描述

描述

管理员可以进入天气管理界面,可以对智慧社区信息管理进行操作

基本流程

  1. 管理员登录成功进入系统
  2. 进入天气管理界面
  3. 对智慧社区信息管理进行操作
  4. 确认是否进行操作
  5. 操作成功提示
  6. 显示操作之后的信息

返回数据

天气结果集

表2-8 智慧社区分析

描述

描述

管理员可以进入智慧社区分析界面,可以对智慧社区分析进行操作

基本流程

  1. 管理员登录成功进入系统
  2. 进入智慧社区分析界面
  3. 对智慧社区分析进行操作
  4. 确认是否进行操作
  5. 操作成功提示
  6. 显示操作之后的信息

返回数据

智慧社区分析结果集

2.2 所需技术分析

2.2.1  Flask

Flask是一个开放源代码Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯网络IP 集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。这套框架是以比利时的吉普赛爵士吉他手Flask Reinhardt来命名的。2019年12月2日,Flask 3. 0发布 。

Flask是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Dj ango框架中,还包含许多功能强大的第三方插件,使得Flask具有较强的可扩展性。Flask 项目源自一个在线新闻 Web 站点,于 2005 年以开源的形式被释放出来。其工作流程主要可划分为以下几步:

1.用manage .py runserver 启动Flask服务器时就载入了在同一目录下的settings .py。该文件包含了项目中的配置信息,如前面讲的URLConf等,其中最重要的配置就是ROOT_URLCONF,它告诉Flask哪个Python模块应该用作本站的URLConf,默认的是urls .py。

2.当访问url的时候,Flask会根据ROOT_URLCONF的设置来装载URLConf。

3.然后按顺序逐个匹配URLConf里的URLpatterns。如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)。

4.最后该view函数负责返回一个HttpResponse对象

2.2.2 MySQL

MySQL是关系型数据库管理系统(RDBMS),是RDBMS中最流行的一种,且许多操作系统上都能运行 MySQL。安装容易,运营成本低,便于维护。与其他大型数据库相比,对初学者更加友好,容易学习。与此同时,MySQL也是网络应用的最佳RDBMS之一[14]。

2.3系统可行性

在深入了解一个智慧社区的运行状况和管理方式之后,为了更好的对智慧社区运作进行分析。从经济可行性、技术可行性和操作可行性三个角度对智慧社区分析系统进行了探讨。

2.3.1经济可行性分析

智慧社区建设系统借助大数据技术,通过采集、处理和分析海量的数据,为社区居民提供更加便捷、高效的服务,实现社区资源的优化配置和管理。从经济可行性角度来看,智慧社区建设系统具有以下几点优势:

提高社区资源利用效率:智慧社区建设系统可以通过大数据分析,实现对社区资源进行全面覆盖和有效利用,进而提高资源的利用效率和节约社区开支。

减少业务劳动力成本:智慧社区建设系统可以通过自动化处理,减少人工劳动力成本,进而提高社区管理效率。

增加业务收入:智慧社区建设系统可以通过提供更加便捷、高效、个性化的服务,增加社区业务的收入,为社区经济发展提供有力支持。

提高社区品牌价值:智慧社区建设系统可以提升社区的形象和品牌价值,进而吸引更多的居民和企业入驻,促进社区经济的快速发展。

总之,智慧社区建设系统的经济可行性非常高,可以带动整个社区经济的发展和进步。

2.3.2技术可行性分析

本系统应用的开发使用了MySQL作为智慧社区分析系统相关数据的存储中心。采用的语言是稳定的Python语言,整体开发架构是:后端使用的是:Flask框架,Flask目前被许多大公司使用,是一个可靠的技术框架,前端使用的echarts组件等,操作流畅、运行速度快。因此,该系统在技术上是足够可行的。

2.3.3操作可行性分析

智慧社区建设是指利用现代化的信息技术手段,对社区内的基础设施、公共服务、居民生活等进行智能化管理和服务。基于大数据技术的智慧社区建设系统可以通过收集、分析和应用社区内的各类数据,实现对社区运行状况的实时监测和优化调整。下面我将从可行性分析的角度探讨该系统的操作性。

一、技术可行性 基于大数据技术的智慧社区建设系统需要依托于先进的信息技术设备和高效的数据处理平台。目前,随着物联网、云计算、大数据等新型信息技术的发展,这些技术成为了支撑智慧社区建设系统的有力保障。因此,从技术上讲,基于大数据技术的智慧社区建设系统是可行的。

二、数据收集与分析可行性 基于大数据技术的智慧社区建设系统需要收集社区内各类数据,并进行分析处理。社区内的数据来源形式多样,包括传感器采集的环境数据、社区居民的行为数据等。但是,数据采集和分析需要投入大量的人力、物力和财力。此外,还需要克服数据隐私保护、数据质量控制等问题。因此,从数据收集与分析的角度来看,虽然技术上可行,但需要充分考虑实际情况和投入的成本。

三、操作流程可行性 基于大数据技术的智慧社区建设系统需要建立完善的操作流程,包括数据采集、数据传输、数据处理、数据应用等环节。这些环节需要严格管理,以确保数据的准确性和安全性。此外,还需要建立有效的反馈机制,及时调整运营策略。虽然这些操作流程在理论上是可行的,但实际操作需要考虑到人力资源、管理成本等方面的问题。

四、社区居民的接受可行性 基于大数据技术的智慧社区建设系统是为社区居民服务的,因此需要考虑社区居民对该系统的接受度。社区居民需要理解该系统的作用和使用方法,并愿意积极参与其中,才能真正发挥其作用。此外,社区居民对隐私保护等问题也需要有足够的关注和保障。因此,在实际操作中需要制定合理的宣传、培训和保护政策,以提高居民的接受度和使用率。

综上所述,基于大数据技术的智慧社区建设系统在技术上是可行的。但是,在实际操作中需要充分考虑数据收集与分析的投入成本、操作流程的管理和居民接受度等问题,以确保该系统能够发挥其最大的效益。


第3章 系统功能总体设计

3.1设计目标

本管理系统是为了深入研究智慧社区等业务模块,基于大数据和大数据技术,设计和实现一个雨情分析系统,旨在分析未来智慧社区,帮助相关人员做好防汛准备工作。该系统通过收集和分析气象数据、历史智慧社区数据等,运用机器学习算法或统计模型进行智慧社区分析,为防汛部门提供可靠的决策依据。

3.2 智慧社区爬虫设计

这个项目我们的主要目的是爬取智慧社区信息,包括智慧社区名称和智慧社区描述和规模等具体详情信息,下面描述本文爬虫工程主要设计步骤。

(1)创建项目

打开一个终端输入:scrapy startproiect python_ zgc _data,Scrapy框架将会在指定目录下生成整个工程框架。系统生成的目录如下图3-2所示:

图3-2爬虫框架目录结构

(2)修改setting文件

如图3-1所示为修改后的setting文件主要内容,本设计主要修改三项内容,

第一个是不遵循机器人协议,第二个是下载间隙,由于下面的程序要下载多个页

面,所以需要给一个间隙(不给也可以,只是很容易被侦测到),第三个是请求

头,添加一个User-Agent。

表3-1 爬虫setting文件主要配置

BOT_NAME = 'python_city_data'

SPIDER_MODULES = ['python_city_data.spiders']
NEWSPIDER_MODULE = 'python_city_data.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'python_city_data (+http://www.yourdomain.com)'
#换伪造请求头
USER_AGENT = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36"
# Obey robots.txt rules
ROBOTSTXT_OBEY = False

(3)确认要提取的数据,item 项

item定义你要提取的内容(定义数据结构),比如我提取的内容为智慧社区的所在城市和智慧社区天气详情,于是需要在items类中新建对应的实体类,并需要设置相应的字段取出对应的数据。Field 方法实际上的做法是创建一个字典,给字典添加一个建,暂时不赋值,等待提取数据后再赋值。

(4)开发爬虫程序,访问下载网页,使用Xpath语法提取内容

3.3 智慧社区分析程序设计

卷积神经网络(Convolutional Neural Network, CNN)可以用于智慧社区分析任务。下面是一个基本的卷积神经网络分析智慧社区的流程:

数据准备:收集智慧社区相关的数据集,包括气象数据、历史智慧社区数据等。将数据集划分为训练集和测试集。

数据预处理:对数据进行预处理,包括数据清洗、归一化等。常见的预处理步骤包括特征缩放、平均值去除、标准化等。

构建 CNN 模型:使用卷积神经网络构建智慧社区分析模型。CNN模型通常由多个卷积层、池化层和全连接层组成。卷积层用于提取图像特征,池化层用于减小特征图的尺寸,全连接层用于输出分析结果。

编译模型:选择适当的损失函数和优化算法,并编译模型。常见的损失函数包括均方误差(Mean Squared Error, MSE)和交叉熵(Cross Entropy),常见的优化算法包括随机梯度下降(Stochastic Gradient Descent, SGD)和Adam等。

训练模型:使用训练集对模型进行训练。通过反向传播算法,优化模型的参数以最小化损失函数。可以设置合适的训练轮数(epochs)和批量大小(batch size)。

模型评估:使用测试集评估模型性能。常见的评估指标包括准确率(accuracy)、精确度(precision)、召回率(recall)等。

分析结果:使用训练好的模型对新的输入数据进行分析。将输入数据输入到模型中,获取模型的输出结果。

结果分析和优化:分析模型的分析结果,并根据需要进行模型优化和调整,例如调整网络架构、调整超参数、增加数据量等。

需要注意的是,智慧社区分析是一个复杂的问题,单独使用卷积神经网络可能无法达到很高的分析准确率。通常需要结合其他气象学知识、特征工程和模型融合等方法来提高智慧社区分析的效果。以上流程仅为基本示例,实际应用中可能需要根据具体情况进行修改和优化。

模型共包含9层(输入、输出和7个隐藏层)。隐藏层在ConvLSTM2D层和BatchNormalization层之间交换。ConvLSTM2D层就像简单的LSTM层,但是它们的输入和循环转换卷积。ConvLSTM2D层在保留输入维度的同时,随着时间的推移执行卷积运算。你可以把它想象成一个简单的卷积层,它的输出被压平,然后作为输入传递到一个简单的LSTM层。ConvLSTM2D层接收形式为(samples, time, channels, rows, cols)的张量作为输入,输出形式(samples, timesteps, filters, new_rows, new_cols)。所以它们在一段时间内对一系列帧进行运算。

ConvLSTM2D层之间的BatchNormalization层进行归一化操作

对于所有的层(除了输出层),都使用LeakyRelu激活函数,他比ReLu好一些,并且和ReLu一样快。

该模型采用二元交叉熵损失函数和Adadelta梯度下降优化器进行拟合。由于数据的高维数,Adadelta会比经典Adam优化器有更好的结果。模型训练了25个epoch(之后开始过拟合)。

图3-3 CNN算法分析过程

在训练模型之后,使用来自验证数据集的示例数据进行测试。模型的输入是18个连续的帧(对应于雷达捕捉到的近1.5小时的信号),它返回下一个18个分析帧(对应于接下来的1.5小时)。

3-4 CNN模型构建核心代码

def calculate_population_density(population, area):

    """

    计算社区的人口密度

    :param population: 社区人口数量

    :param area: 社区面积(单位:平方公里)

    :return: 人口密度(单位:人/平方公里)

    """

    density = population / area

    return density

# 示例数据

community_population = 10000  # 社区人口数量

community_area = 5  # 社区面积(单位:平方公里)

# 调用函数计算人口密度

population_density = calculate_population_density(community_population, community_area)

print("社区人口密度为:", population_density, "人/平方公里")

第4章 系统详细分析与设计

基于Flask智慧社区分析可视化分析平台的基本业务功能是采用Flask框架实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。

4.1 开发环境与配置

4.1.1 开发环境

本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装天气端软件,交互性更强。基于Flask智慧社区分析可视化分析平台使用IDEA集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行,本地 是Apache的核心项目,其技术先进、性能稳定并且开源免费,因而被普遍应用。本系统的主要开发环境以及开发工具如表4-1所示。

表4-1 系统开发环境和工具

项目

系统环境及版本

硬件环境

Windows 64 位操作系统

Python

Python2.6

数据库

MySql

开发工具

Pycharm

项目架构

Flask

4.1.2 框架配置介绍 

本系统使用集成开发工具Pycharm进行开发,由于 IDEA 中本地配置详细资料有很多,不做详细赘述, 本文主要介绍 Flask框架首先需要在项目中中引入各框架以及数据库连接等所需要工具包。

图4-1 后台的配置文件

4.2 数据库的设计

数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。

根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、智慧社区分析可视化等数据库表。

用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-2所示:

图4-2 用户实体属性图

根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对智慧社区分析可视化的管理,使智慧社区分析可视化与用户实体存在对应关系。

4.3 系统功能模块实现

4.3.1登录认证

用户登录时需要在登录界面输入用户名、密码进行身份认证,要求必须是表单认证、校验。具体流程如时序图如4-2所示。

图4-3登录界面图

图4-2登录认证流程图

4.3.2智慧社区历史数据功能

智慧社区管理功能是对智慧社区进行查询,删除等操作的功能集合,智慧社区管理功能使用到了智慧社区表,智慧社区分析可视化分析系统的智慧社区分析管理功能界面如下图所4-4所示:

图4-4 智慧社区历史数据管理

智慧社区分析管理功能流程功能图如图4-5所示:

图4-5 智慧社区历史管理功能流程图

 通过“智慧社区分析可视化分析”按钮,进入智慧社区分析可视化分析界面,用户可以看到智慧社区分析可视化列表,例如:智慧社区分析可视化名称、所属类别、长度、智慧社区分析可视化目的地、智慧社区分析可视化源、智慧社区分析可视化时间的详细信息。通过此界面,用户可以对智慧社区分析可视化进行删除管理操作。

4.3.3智慧社区分析可视化功能

数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的

数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结

构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式

进行展示,从而形象直观地表达数据蕴含的信息和规律。

图4-6 智慧社区分析可视化界面

智慧社区可视化分析开发的难点并不在于图表类型的多样化,而在于如何能在简单的一页之内让用户读懂智慧社区分析可视化数据之间的层次与关联,这就关系到布局、色彩、图表、动效的综合运用。如排版布局应服务于业务,避免为展示而展示;配色一般以深色调为主,注重整体背景和单个视觉元素背景的一致性。本文使用Echarts中地图、线条等组件,将分析结果较为直观的展示给平台用户,使得用户能够简便的获取有效的信息。

4.4 本章小结

本章主要分析了基于Flask的智慧社区分析可视化分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的智慧社区分析可视化分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是html实现。


第5章 系统功能实现与运行测试

5.1后台登录页面

5.1.1功能概要

该功能是用于用户登陆智慧社区分析系统,当用户输入用户名和密码之后,经过数据校验,成功则进入主页面。

5.1.2详细描述

该后台登录功能,通过向后台登录接口发送请求,如图5.1是后台登录界面。登陆成功,则提示登陆成功,并跳转到天气管理信息界面,如图5.2所示。

图 5. 1 后台登录页面截图

图 5. 2 登录成功页面

5.2信息管理

5.2.1智慧社区信息管理

智慧社区信息管理功能:实现智慧社区信息的相关操作。如图5.3是天气管理详情界面,进入天气管理界面,加载完毕则显示所有的智慧社区信息。

添加智慧社区信息:进行添加操作后,会弹出一个dialog让用户输入智慧社区信息。表单带*号的需要验证输入合法性,如图5.4所示。

图 5. 3 智慧社区信息管理

5.2.2 智慧社区可视化看板功能

数据分类分析模块就是对我们采集和计算的分析结果的展示。数据分析模块的

数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结

构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式

进行展示,从而形象直观地表达数据蕴含的信息和规律。智慧社区大数据看板界面如图5-4所示。

图5-7智慧社区大数据分析平台界面


第6章 总结与展望

6.1 系统开发遇到的问题 

由于基于大数据的智慧社区分析平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括大数据技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。

6.2展望

基于大数据的智慧社区分析有着广阔的展望。随着物联网、传感器技术和数据采集能力的不断发展,社区中产生的数据量不断增加,这为智慧社区分析提供了更多的数据基础。

首先,基于大数据的智慧社区分析可以在城市规划和管理方面发挥重要作用。通过对社区居民的行为、偏好和需求进行数据分析,可以帮助城市规划者更好地理解社区的发展趋势和需求变化,并据此进行合理的城市规划和资源配置。

其次,智慧社区分析可以改善社区居民的生活质量。通过对社区内的各类数据进行整合分析,可以提供个性化的服务和建议,比如交通指引、健康管理、安全预警等,从而提升居民的生活便利性和安全性。

此外,基于大数据的智慧社区分析还可以促进社区居民之间的互动和合作。通过对社区居民的兴趣、技能和社交关系等数据进行分析,可以推荐相似兴趣的人群、组织社区活动、促进邻里互助等,增强社区凝聚力和共同发展。

然而,随之而来的挑战是如何保护居民的隐私和数据安全。智慧社区分析需要建立一套严格的数据隐私保护机制,确保个人信息不被滥用或泄露,并采取相应的数据安全措施,保障数据在采集、传输和存储过程中的安全性。

总之,基于大数据的智慧社区分析具有巨大的潜力,可以为城市规划、社区管理和居民生活带来诸多好处。但在推进过程中,需要平衡数据利用与隐私保护之间的关系,确保数据的合法使用和居民权益的保护。

参考文献

  1. 于瑶瑶. 智慧社区分析系统的设计与实现[D]. 济南: 山东大学, 2019.
  2. 刘文博. 智慧社区分析系统的设计与实现[D]. 吉林大学, 2016.
  3. 于隆. 中小智慧社区分析系统的设计与实现[D]. 大连理工大学, 2015
  4. Liu N, Chen L J, University Q N. Management System Design of Stocking, Selling and Storing of Enterprises[J]. Journal of Hebei North University, 2016.146-152.
  5. Bose Indranil, Pal Raktim, Ye Alex. ERP and SCM systems integration:The case of a valve manufacturer in China[J]. Information & Management. 2008, 45(4):233~241.
  6. 陈京民. 管理信息系统[M]. 北京:清华大学出版社, 2006.136~137.
  7. 陈晓. 制造智慧社区ERP深化应用研究[D]. 华北电力大学, 2014:6~8.
  8. 廖芹等. 工业智慧社区库存管理信息系统的设计和研究[J]. 华南理工大学学报,2019(5): 254~260.
  9. 张瑞君, 孙玥璠, 石保俊. 中国智慧社区 ERP 投资关键信息披露问题研究[J]. 会计研究, 2018, 02:55-62+96.
  10. 刘华敏,李玉. 智慧社区分析系统的设计与实现[J]. 电脑知识与技术, 2018,  (11) :34~37.
  11. 徐鑫, 何红军, 包玉玲. 供应链中库存管理的研究[J]. 自然科学,2005, 3(6): 46~52.

致谢

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值