基于知识图谱的商品推荐系统的设计与实现

144 篇文章 0 订阅
139 篇文章 0 订阅

基于知识图谱的商品推荐系统的设计与实现

摘要: 在传统的商品推荐系统中,通常使用协同过滤等方法,但这些方法在处理冷启动问题、用户兴趣变化和推荐解释等方面存在一定的局限性。随着知识图谱技术的发展,人们意识到将商品信息、用户行为等多维数据整合成一个知识图谱[,能够更好地捕捉商品之间的关联性和用户的复杂兴趣。因此,这一课题的来源在于对传统商品推荐系统的不足之处的深入思考,并试图通过知识图谱的方式来解决这些问题。

将知识图谱应用到商品推荐系统中,能更全面、深入地挖掘商品之间的关系,可以提升推荐的准确性。知识图谱能够通过融入领域知识,迅速适应新的用户和商品,从而解决冷启动问题,并且可以通过分析知识图谱中用户和商品之间的连接关系,增加推荐的可解释性。知识图谱的构建也有助于商品的横向推荐,促进销售的多样性。基于知识图谱的商品推荐系统不仅是对传统推荐系统的改进,更是对推荐系统在提供个性化、准确、可解释等方面的优化,对电子商务和个性化推荐领域具有重要的实际意义。

本文主要研究内容如下:

1. 商品知识图谱构建: 首先,在研究中,对商品的多维信息进行整理,包括商品的属性、用户的行为数据、商品之间的关联性等。这些信息将被整合到一个结构化的知识图谱中,形成一个全面而丰富的商品信息网络。

2. 商品特征提取: 使用卷积神经网络来提取商品的深度特征。这包括以下步骤:

商品图像处理: 如果商品信息中包含图像数据,首先将商品图像输入到卷积神经网络中。卷积层将对图像进行特征提取,捕捉商品的视觉信息。卷积核将扫描图像,检测边缘、纹理等特征,形成图像的低级表示。

商品文本信息处理: 对商品的文本信息,如商品描述、评论等,采用自然语言处理技术进行预处理,并输入到卷积神经网络中。卷积层通过卷积运算捕捉文本的局部特征,形成文本的低级表示。

商品知识图谱信息整合: 将商品知识图谱中的关联信息与图像和文本特征整合。通过将图像和文本特征与知识图谱中的节点关联,建立商品的高级表示,使模型能够更好地理解商品之间的关系。

3. 用户特征提取: 卷积神经网络同样用于提取用户的深度特征。这包括以下步骤:

用户行为序列处理: 对用户的历史行为序列进行处理,将其作为输入传入卷积神经网络。卷积层通过卷积运算捕捉行为序列中的局部模式,例如用户的偏好、购买习惯等,形成行为序列的低级表示。

用户知识图谱信息整合: 利用用户的个人信息、社交关系等,构建用户知识图谱。将用户行为序列与知识图谱中的节点关联,建立用户的高级表示,使模型能够更全面地理解用户的兴趣和特征。

4. 深度特征融合与推荐: 将商品和用户的深度特征进行融合,形成最终的表示。可以采用全连接层、注意力机制等方法进行特征的组合,以更好地捕捉商品和用户之间的复杂关系。最终,将融合后的特征输入到推荐模型中,通过训练得到一个能够准确预测用户兴趣的模型。

5. 模型训练与优化: 使用已有的用户-商品交互数据进行模型的训练,通过反向传播算法不断调整网络参数,使模型的推荐效果不断优化。采用合适的损失函数,如交叉熵损失函数,以评估模型在推荐任务上的性能。

关键词:知识图谱,Flask,商品信息,推荐系统

Design and implementation of product recommendation system based on knowledge graph

Abstract: In the traditional product recommendation system, collaborative filtering and other methods are usually used, but these methods have certain limitations in dealing with cold start problems, user interest changes and recommendation interpretation. With the development of knowledge graph technology, people realize that integrating commodity information, user behavior and other multidimensional data into a knowledge graph can better capture the correlation between commodities and the complex interests of users. Therefore, the source of this topic lies in the in-depth thinking of the shortcomings of traditional commodity recommendation system, and attempts to solve these problems through knowledge graph.

Applying knowledge graph to product recommendation system can dig the relationship between products more comprehensively and deeply, and improve the accuracy of recommendation. Knowledge graph can solve the cold start problem by incorporating domain knowledge and quickly adapting to new users and products, and can increase the interpretability of recommendations by analyzing the connection between users and products in the knowledge graph. The construction of knowledge graph also contributes to the horizontal recommendation of goods and promotes the diversity of sales. The product recommendation system based on knowledge graph is not only the improvement of the traditional recommendation system, but also the optimization of the recommendation system in providing personalized, accurate and interpretable aspects, which has important practical significance in the field of e-commerce and personalized recommendation.

The main research contents of this paper are as follows:

1. Construction of commodity knowledge graph: First, in the research, multi-dimensional information of commodities is sorted out, including commodity attributes, user behavior data, and the correlation between commodities. This information will be integrated into a structured knowledge graph to form a comprehensive and rich commodity information network.

2. Commodity feature extraction: Convolutional neural network is used to extract the depth feature of the commodity. This includes the following steps:

Product image processing: If the product information contains image data, the product image is first input into the convolutional neural network. The convolutional layer will extract the feature of the image and capture the visual information of the product. The convolution kernel will scan the image, detect features such as edges and textures, and form a low-level representation of the image.

Product text information processing: The text information of the product, such as product description, comments, etc., is pre-processed by natural language processing technology and input into the convolutional neural network. The convolution layer captures the local features of the text through the convolution operation and forms the low-level representation of the text.

Product knowledge map information integration: the product knowledge map of the associated information and image and text features integration. By correlating image and text features with nodes in the knowledge graph, a high-level representation of goods is built, enabling the model to better understand the relationships between goods.

3. User feature extraction: Convolutional neural network is also used to extract user depth features. This includes the following steps:

User behavior sequence processing: The user's historical behavior sequence is processed and fed into the convolutional neural network as input. The convolution layer captures local patterns in the behavior sequence through convolution operations, such as user preferences, purchasing habits, etc., and forms a low-level representation of the behavior sequence.

User knowledge graph information integration: Using the user's personal information, social relations, etc., to build the user knowledge graph. By associating the sequence of user behavior with nodes in the knowledge graph, a high-level representation of the user is established, which enables the model to understand the user's interests and characteristics more comprehensively.

4. Deep feature fusion and recommendation: The deep features of goods and users are integrated to form the final representation. Features can be combined by means of full connection layer, attention mechanism, etc., to better capture the complex relationship between goods and users. Finally, the fused features are input into the recommendation model, and a model that can accurately predict the user's interest is obtained through training.

5. Model training and optimization: The existing user-commodity interaction data is used to train the model, and the network parameters are constantly adjusted through the backpropagation algorithm to optimize the recommendation effect of the model. A suitable loss function, such as cross-entropy loss function, is used to evaluate the performance of the model on the recommended task.

Key words: Knowledge graph, Flask, product information, recommendation system

1 绪论

1.1选题的背景与意义

在传统的商品推荐系统中,通常使用协同过滤等方法,但这些方法在处理冷启动问题、用户兴趣变化和推荐解释等方面存在一定的局限性。随着知识图谱技术的发展,人们意识到将商品信息、用户行为等多维数据整合成一个知识图谱,能够更好地捕捉商品之间的关联性和用户的复杂兴趣。因此,这一课题的来源在于对传统商品推荐系统的不足之处的深入思考,并试图通过知识图谱的方式来解决这些问题。

提升推荐准确性: 通过构建商品知识图谱,能够更全面、深入地挖掘商品之间的关系,从而提高推荐系统的准确性。用户的历史行为、兴趣爱好等信息都可以以更精细的方式被纳入考量,使推荐更贴近用户的实际需求。

解决冷启动问题: 传统推荐系统在面对新用户或新商品时往往表现不佳,而知识图谱能够通过融入领域知识,迅速适应新的用户和商品,从而解决冷启动问题,提升系统的灵活性。

推荐解释可解性: 知识图谱不仅能提高推荐准确性,还能提供推荐的解释可解性。通过分析知识图谱中的关系,用户和商品之间的连接,系统能够向用户解释为何给出这样的推荐,提高用户对推荐结果的信任度。

促进商品交叉销售: 知识图谱的引入能够发现商品之间更为复杂的关联,有助于推动商品的交叉销售。系统可以更全面地了解用户的潜在需求,提供更具吸引力的横向推荐,促进销售多样性。

综上所述,基于知识图谱的商品推荐系统不仅是对传统推荐系统的改进,更是对推荐系统在提供个性化、准确、可解释等方面的全面优化,对电子商务和个性化推荐领域具有重要的实际意义。

1.2国内外现状

1.2.1 国内现状

近年来,国内对商品推荐系统的研究取得了显著进展,主要表现在以下几个方面:

深度学习与推荐系统的融合: 国内研究者将深度学习技术引入商品推荐系统,探索卷积神经网络(CNN)和循环神经网络(RNN)等模型在个性化推荐中的应用。这种融合为系统提供更强大的学习能力,使得推荐结果更加精准和个性化。

大数据与用户画像的应用: 大数据技术在商品推荐中得到广泛应用,通过分析用户的历史行为、社交网络数据等,建立准确的用户画像。这有助于更好地理解用户需求,提升推荐系统的精准性和适应性。

行业应用广泛: 电商平台、社交媒体等行业广泛应用商品推荐系统,提高了用户体验,促进了销售业绩的增长。一些创新型企业还在推荐系统中引入虚拟现实(VR)和增强现实(AR)技术,进一步提升用户购物体验。

1.2.2 国外现状

国外在商品推荐系统领域同样有着深入的研究,具体表现如下:

知识图谱的应用: 国外学者在知识图谱领域的研究比较深入,通过构建商品知识图谱,能够更细致地挖掘商品之间的关联性,提升了推荐系统的智能化水平。这种方法有望解决传统推荐系统中存在的冷启动问题和推荐可解释性的挑战。

协同过滤算法的改进: 国外研究者对协同过滤算法进行了不断的优化和改进,包括基于模型的协同过滤、混合协同过滤等,以提高推荐系统的准确性和泛化性。

推荐系统的可解释性研究: 另一个国外的研究热点是推荐系统的可解释性,即如何让用户更好地理解系统的推荐结果。这一方向的研究旨在提高用户对推荐算法的信任度,增强用户体验。

总体而言,国内外关于基于知识图谱的商品推荐系统的研究都取得了显著的进展。这些研究不仅推动了推荐系统领域的技术创新,也为实际应用提供了更加智能、个性化的解决方案。未来,随着人工智能和大数据技术的不断发展,基于知识图谱的商品推荐系统将更加成熟和全面,为用户提供更优质的推荐体验。

1.3 拟研究的内容

研究目标:

构建商品知识图谱: 主要目标是通过整合商品的多维信息,包括商品属性、用户行为、关联标签等,构建一个丰富而准确的商品知识图谱。这将有助于更全面地理解商品之间的关系,为推荐系统提供更为精细的推荐依据。

优化个性化推荐算法: 着眼于优化推荐系统的算法,充分利用知识图谱中的信息,提高个性化推荐的准确性。通过深度学习和机器学习等技术,实现更智能、更符合用户兴趣的商品推荐。

解决冷启动问题: 针对新用户或新商品的冷启动问题,通过知识图谱的引入,探索解决方案,使推荐系统能够更好地适应变化快速的市场环境,保持高效性能。

提高推荐系统的解释性: 研究如何增强推荐系统的解释性,使用户能够更清晰地理解为何会得到某个推荐结果。这将有助于提高用户对系统的信任度,促进系统的实际应用。

研究内容:

商品知识图谱构建: 首先,对商品的多维信息进行整理和标注,包括商品的属性、用户的行为数据、商品之间的关联性等。然后,借助知识图谱构建技术,建立商品知识图谱,形成一个结构化、语义化的商品信息网络。

推荐算法优化: 在知识图谱的基础上,深入研究个性化推荐算法,结合深度学习和机器学习等先进技术,提出一种适用于商品知识图谱的推荐算法。优化算法的目标是提高系统的推荐准确性和用户满意度。

冷启动问题的解决: 针对冷启动问题,研究如何在用户或商品信息稀缺的情况下,通过知识图谱的补充信息,实现有效的推荐。这包括利用商品的上下文信息、用户的社交网络等手段来弥补信息不足带来的问题。

推荐系统的解释性提升: 设计一种能够解释推荐结果的方法,通过可视化、文字解释等方式向用户清晰展示推荐的依据。这将提高用户对推荐系统的信任度,同时为用户提供更具吸引力的推荐理由。

综合而言,本课题旨在借助知识图谱技术,通过构建商品知识图谱和优化推荐算法,解决推荐系统中的关键问题,为商品推荐领域的发展提供新的思路和解决方案。通过研究内容的深入,期望能够为电商平台和其他推荐系统提供更智能、更精准的商品推荐服务。

1.4相关技术介绍

1.4.1 知识图谱技术

知识图谱是一种将实体、关系和属性组织成图形结构的技术,用于表示和存储丰富的语义信息。它可以帮助计算机理解和推理现实世界中的知识,是人工智能领域中重要的基础技术之一。以下是知识图谱技术的介绍:

1. 概念和组成

实体(Entity):在知识图谱中表示现实世界中的事物,如人、地点、物品等。

关系(Relation):连接实体之间的关联性,描述实体之间的联系,如“居住于”、“创作”等。

属性(Attribute):描述实体的特征或属性,如姓名、年龄、出生日期等。

2. 技术实现

数据建模:使用图形模型表示实体、关系和属性的结构,通常采用图数据库来存储和管理知识图谱数据。

语义表示:采用统一的语义表示方法,如RDF(Resource Description Framework)来描述实体、关系和属性之间的关联。

知识抽取:从结构化和非结构化数据中提取实体、关系和属性信息,包括自然语言处理和信息抽取技术。

推理和查询:利用知识图谱进行推理和查询,发现实体之间的关联性,回答复杂的语义查询问题。

3. 应用领域

搜索引擎:帮助搜索引擎更好地理解用户意图和搜索结果之间的关系,提供更精准的搜索服务。

智能对话系统:支持对话系统理解用户意图,并根据知识图谱中的信息做出智能响应。

推荐系统:利用知识图谱建立用户、商品、标签等之间的关系,为用户提供个性化的推荐服务。

医疗健康:整合医学知识,帮助医生和研究人员快速获取医学信息。

知识图谱技术在各领域得到了广泛的应用,能够帮助计算机更好地理解和利用丰富的语义信息,促进人工智能的发展和应用。

1.4.2 Flask技术

Flask是一个开放源代码Web应用框架,由Python写成。采用了Mgoods的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯网络IP 集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。这套框架是以比利时的吉普赛爵士吉他手Flask Reinhardt来命名的。2019年12月2日,Flask 3. 0发布 。

Flask是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Dj ango框架中,还包含许多功能强大的第三方插件,使得Flask具有较强的可扩展性。Flask 项目源自一个在线新闻 Web 站点,于 2005 年以开源的形式被释放出来。其工作流程主要可划分为以下几步:

1.用manage .py runserver 启动Flask服务器时就载入了在同一目录下的settings .py。该文件包含了项目中的配置信息,如前面讲的URLConf等,其中最重要的配置就是ROOT_URLCONF,它告诉Flask哪个Python模块应该用作本站的URLConf,默认的是urls .py。

2.当访问url的时候,Flask会根据ROOT_URLCONF的设置来装载URLConf。

3.然后按顺序逐个匹配URLConf里的URLpatterns。如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)。

4.最后该view函数负责返回一个HttpResponse对象

1.4.3 CNN算法

CNN(卷积神经网络)在推荐系统中的应用通常与图像或视频推荐相关,而不是传统的商品或内容推荐。CNN在图像处理领域表现出色,因此在推荐系统中也可以用于处理图像信息,并提取图像特征来进行推荐。以下是关于CNN推荐算法技术的简要介绍:

1. 图像特征提取

卷积层:CNN通过卷积层可以提取图像的局部特征,识别边缘、纹理等低级特征。

池化层:通过池化层可以降低特征的维度和计算量,保留图像的主要特征。

卷积核:卷积核可以学习不同的特征表示,例如边缘、颜色等,从而对图像进行更深入的特征提取。

2. 图像相似度计算

特征匹配:利用CNN提取的图像特征,可以计算图像之间的相似度,从而找到相似的图像或视频内容。

推荐相似图像:基于图像相似度,可以向用户推荐与其喜欢的图像或视频内容相似的内容。

3. 基于内容的推荐

内容特征学习:CNN可以学习图像的内容特征,例如物体、场景等,从而实现基于内容的推荐。

个性化推荐:根据用户喜好的图像特征,利用CNN进行个性化推荐,向用户推荐符合其兴趣的图像或视频内容。

4. 应用领域

视觉搜索:利用CNN提取图像特征,实现基于图像内容的搜索和推荐服务。

视频推荐:通过对视频内容进行特征提取,实现视频推荐和相似视频发现。

社交媒体推荐:在社交媒体平台上,利用CNN进行图像推荐,向用户推荐感兴趣的图片或视频内容。

总的来说,CNN在推荐系统中的应用主要集中在处理图像和视频内容方面,通过图像特征提取和相似度计算来实现个性化推荐服务。随着深度学习技术的不断发展,CNN在推荐系统中的应用也将得到更广泛的探索和应用。

2 需求分析

2.1 可行性分析

技术可行性:考虑系统的开发和实施所需的技术能力和资源。评估开发人员是否具备足够的技术知识和经验,同时确保系统能够兼容和集成商城现有的信息系统。此外,还要考虑系统的稳定性、可扩展性和安全性等方面的技术要求。

经济可行性:分析系统开发和运营所需的成本与收益。包括项目启动资金、人力资源、硬件设备、软件许可等方面的成本,并考虑系统使用后能够带来的效益,如提高工作效率、降低人力成本等。通过综合评估,判断项目是否具有经济回报且符合商城在教务管理上投资的合理范围。

组织可行性:评估商城内部组织部门对于引入商品推荐系统所需做出的配合与支持。需要确保高层管理者对项目有足够重视并提供必要资源支持,同时教师和学生也需要配合参与并积极使用新系统。

2.2 系统总体需求分析

通过大数据分析,系统旨在为买家提供更准确、个性化的商品推荐结果,帮助买家选择更合适的商品。系统将设计直观的用户界面和交互方式,让买家能够便捷地输入个人信息,了解推荐结果,并灵活地进行筛选和排序。通过精心设计的界面和功能,提升用户体验,使买家在选择商品时感到便利和满意。系统将收集和整理各个商品的相关信息,买家可以在系统中获取全面而详细的信息,帮助他们更好地了解不同商品及其特点,做出更明智的选取决策。

2.3 系统页面设计

系统的页面设计使用基于CSS、html实现。并且结合了Echarts前端框架。使用Vue 将后台数据和前端展示分离大大提高了开发效率,加上前端框架的使用,让网站更加美观,提高了用户的交互体验。

在网页界面的设计上。为了满足网站复杂的需求需要使用大量的页面展示。为了减少代码的冗余,可以给页面进行优化,抽取部分公共部分提高页面的复用性能提高开发效率。同时为了提高页面的美观性,在开发过程中也参考了行业中成功的网站的布局。

总结归纳出一下几点:

(1)网站总体的布局大致分为三个部分:头部、中间部分、底部。

(2)头部和尾部信息在不同页面中几乎没有变化,可以复用页面代码。

(3)网站首页信息不宜过多过细,尽量精简。

(4)可以借鉴其他网页模板设计。

(5)通过浏览器开发这模式,可以更好的调整网页布局。

(6)适当增加网站页面的层次感,可以提高用户的使用感受。

本系统界面包括注册登录页面,系统首页页面,商品数据管理页面,商品推荐页面等等。


3 软件设计

3.1 系统总体设计

(1)明确目的

在设计基于知识图谱的用户商品推荐系统平台初期需要了解如何获取商品推荐信息原始数据是非常基础也是关键的一步。要了解大数据分析平台期望达到什么样的运营效果,从而在标签体系构建时对数据深度、广度及时效性方面作出规划,确保底层设计科学合理。

(2)数据采集

只有建立在客观真实的数据基础上,大数据计算分析的结果才有效。在采集数据时,需要考虑多种维度平台前台后台数据收集等方式获得。

(3)数据清洗

就对于各大商品网站或者APP平台,如淘宝京东商品采集到的商品数据而言,可能存在非目标数据、无效数据及虚假数据,因而需要过滤原始数据,去除一些无用的信息以及脏数据,便于后续的处理。

(4)特征工程

特征工程能够将原始数据转化为特征,是一些转化与结构化的工作。在这个步骤中,需要剔除数据中的异常值并将数据标准化。

(5)数据计算

 在这一步我们将得到的数据存储到大数据分析平台,通过开发知识图谱程序对原始数据进行计算,将不同维度的结果存储到Mysql中。

(6)数据展示

分析结果可以通过大数据后台展示到前端界面,对于普通用户而言,只需要登录到该后台系统,就可以获取到就业数据分析后的计算结果,从而了解行业的就业情况,对于求职者而言可以极大地提高效率。

  1. 商品推荐

搭建商品数据仓库,对数据进行分层处理和存储。然后对数据进行预处理,利于推荐模型的计算。其次在改进算法的基础上,结合知识图谱分布式框架,完成了推荐模块,实现了商品推荐系统。最后经过功能测试与非功能测试,体现了商品推荐系统高效性、可扩展性和稳定性,能够满足用户的个性化商品需求。

3.2 系统详细设计

本文前端使用Flask框架搭建了基于知识图谱的商品推荐系统。系统数据库使用了关系型数据库MySQL和大数据数据库。前端收集过用户行为数据后传到后端使用基于用户的用户画像算法来推荐出用户可能喜欢的商品。设计主要完成了从淘宝商品门户网站上爬取数据,并在获取数据后对数据进行清洗过滤等操作后保证了数据的有效性,将爬取到的六千多条数据保存到数据库后,采用基于用户的用户画像算法推荐用户可能喜欢的商品。

在任何信息系统当中有价值的数据都是必不可少的重要部分,如何通过手上的资源获取得到有价值的数据便是开发系统。首先需要考虑的问题根据系统的功能设计数据获取和处理的流程以及其实现方法都已经基本上确定获取和处理流程。

由于大数据开发需要搭建集群环境,而集群环境一般都要求位于同一局域网内的多台机器,由于多台机器从购买和维护的成本的角度上而言都是比较昂贵的,这对于普通开发者而言是一笔不小的费用,因此本文拟使用Vmware虚拟机搭建大数据集群环境。
      Vmware是一款功能强大的桌面虚拟计算机软件,它提供用户可在单一的桌面同时运行不同的操作系统,同时提供用户开发、测试、部署新的应用程序的最佳解决方案。Vmware具有不同系统内核的多个版本的工具包镜像,如Ubuntu,CentOS等,本文选择CentOS版本的镜像,CentOS是免费的、开源的、可以重新分发的开源操作系统,是Linux发行版之一。而知识图谱集群即HDFS集群和YARN集群又依赖于Linux内核,因此选择CentOS版本的镜像最为合适,这样即可在独立的服务器上实现大数据集群的部署。

3.2.1 个性化商品推荐系统设计

基于知识图谱的商品推荐系统旨在以个性化商品推荐模型为基础,使用B/S架构的形式实现。个性化推荐模型使用了 CNN等传统机器学习领域算法进行商品推荐的,同时使用了类似于Word2vec的词袋模型和词向量模型来对歌词进行文本处理,构建了异构文本网络,来标识用户的商品偏好,然后在此基础上引入了一个Flask方面深度学习库deepLearning4j来实现对商品特征提取,对商品进行标签化,可参考来进行混合推荐的。在本系统中,用户可以浏览商品,还可以收藏商品,同时还能为所喜爱的商品点赞,同时还可以进行登录和注册。管理员除了可以实现普通用户所实现的功能外,还可以进行商品、评论、用户的管理。系统通过隐式收集用户操作记录向用户推荐个性化的商品。

图3-1商品推荐系统框架

3.2.2 知识图谱程序设计

使用卷积神经网络来提取商品的深度特征。这包括以下步骤:

商品图像处理: 如果商品信息中包含图像数据,首先将商品图像输入到卷积神经网络中。卷积层将对图像进行特征提取,捕捉商品的视觉信息。卷积核将扫描图像,检测边缘、纹理等特征,形成图像的低级表示。

商品文本信息处理: 对商品的文本信息,如商品描述、评论等,采用自然语言处理技术进行预处理,并输入到卷积神经网络中。卷积层通过卷积运算捕捉文本的局部特征,形成文本的低级表示。

商品知识图谱信息整合: 将商品知识图谱中的关联信息与图像和文本特征整合。通过将图像和文本特征与知识图谱中的节点关联,建立商品的高级表示,使模型能够更好地理解商品之间的关系。

表3-1基于CNN算法的商品推荐算法

import tensorflow as tffrom tensorflow.keras.applications import VGG16from tensorflow.keras.preprocessing import imagefrom tensorflow.keras.applications.vgg16 import preprocess_inputimport numpy as npfrom sklearn.metrics.pairwise import cosine_similarity

# 加载预训练的VGG16模型

model = VGG16(weights='imagenet', include_top=False)

# 加载商品图像并提取特征def extract_features(image_path, model):

    img = image.load_img(image_path, target_size=(224, 224))

    x = image.img_to_array(img)

    x = np.expand_dims(x, axis=0)

    x = preprocess_input(x)

    features = model.predict(x)

    return features.flatten()

# 商品图像路径

image_paths = ['image1.jpg', 'image2.jpg', 'image3.jpg', ...]

# 提取商品图像特征

features_list = [extract_features(image_path, model) for image_path in image_paths]

# 计算商品之间的相似性

similarities = cosine_similarity(features_list, features_list)

# 基于相似性进行商品推荐def recommend_similar_products(product_index, similarities, n=5):

    similar_indices = np.argsort(-similarities[product_index])[:n]

    return similar_indices

# 示例:为第一张图片进行商品推荐

recommended_indices = recommend_similar_products(0, similarities, n=3)print("推荐的商品索引:", recommended_indices)

将知识图谱与CNN结合进行商品推荐可以提高推荐系统的效果,因为知识图谱可以提供丰富的商品关联信息和语义信息,而CNN可以帮助提取商品图像特征。以下是一个简单示例的伪代码,演示如何将知识图谱和CNN结合进行商品推荐:

步骤概述:

1.利用CNN提取商品图像特征。

2.利用知识图谱构建商品之间的关联信息。

3.结合图像特征和知识图谱信息进行商品推荐。

包括商品的基本信息、属性、以及商品之间的关联关系。这些信息构成了商品知识图谱的基础。我们对商品属性进行了编码和嵌入,以便在CNN中进行处理。

用户行为数据: 涵盖用户的点击、购买、收藏等历史行为。这些行为数据用于构建用户与商品之间的关系网络。我们对用户行为进行了时间序列的整理,以更好地捕捉用户兴趣的变化。

知识图谱数据: 商品之间的关联性信息构成了知识图谱的边。我们通过处理商品之间的关系,构建了一个完整的商品知识图谱,用于丰富模型对商品关联的理解。

数据格式转化: 将准备好的数据转化为适合CNN输入的张量格式。确保数据的统一性和可用性,为模型的训练和特征提取做好准备。

通过精心的数据准备,我们确保了模型能够充分利用商品和用户的多维信息,有效地学习深度特征,为基于知识图谱的商品推荐系统的建设奠定了坚实的基础。

表3-2 基于知识图谱的商品推荐代码

# 加载预训练的CNN模型,提取商品图像特征def extract_image_features(image_path):

    # 使用预训练的CNN模型提取商品图像特征

    # 返回图像特征向量

    return image_features

# 构建知识图谱,表示商品之间的关联信息

knowledge_graph = {

    '商品A': ['相关商品1', '相关商品2', '相关商品3'],

    '商品B': ['相关商品4', '相关商品5'],

    # 其他商品关联信息

}

# 基于图像相似度和知识图谱进行商品推荐def recommend_products(image_path, knowledge_graph):

    # 提取商品图像特征

    image_features = extract_image_features(image_path)

    

    # 根据图像特征计算商品相似度

    

    # 基于知识图谱获取相关商品

    

    # 结合相似度和关联信息进行商品推荐

    

    return recommended_products

# 示例:为输入的商品图像进行推荐

input_image_path = 'image.jpg'

recommended_products = recommend_products(input_image_path, knowledge_graph)print("推荐的商品:", recommended_products)

4 编码

基于知识图谱的商品推荐系统可视化系统的基本业务功能是采用Python语言实现的, 数据存储采用关系型数据库 Mysql。 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。

4.1 开发环境与配置

4.1.1 开发环境

可视化后台系统设计基于 B/S 架构,其中服务器包括应用服务器和数据库服务器。 这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装客户端软件,交互性更强。基于知识图谱的商品推荐系统可视化系统后台使用Pycharm集成开发工具。

表4-1 系统开发环境和工具

项目

系统环境及版本

硬件环境

Windows 64 位操作系统

JDK

Jdk1.8

Web服务器

Tomcat7

数据库

MySql

开发工具

IDEA

项目架构

知识图谱

4.2 系统功能模块实现

用户界面(UI)是商品推荐系统与用户交互的桥梁,其设计的好坏直接影响到用户的使用体验和系统的接受度。在本推荐系统中,用户界面以直观、友好、易用为设计原则,通过简洁的布局和明确的操作流程,使用户能够快速上手并享受个性化的商品推荐服务。

4.2.1登录认证

用户登录时需要在登录界面输入用户名、 密码进行身份认证, 要求必须是合法的用户才可以访问系统。 当用户登录系统进行身份认证和权限控制时,在该类中从数据库获取到用户信息及其具有的权限信息, 并且比较用户输入的账号是否存在或者输入的密码与数据源中的密码是否匹配。 具体流程如时序图如4-2所示。

图4-1登录认证流程图

基于知识图谱的商品推荐首页图如下图所4-2所示:

图4-2登录页

4.2.2商品节点管理

商品节点信息管理功能是对商品推荐信息进行查询,删除等操作的功能集合,商品推荐信息管理功能使用到了商品推荐信息表t_shangpin, 商品节点信息表。

图4-3商品数据节点管理

4.2.3商品关系管理

基于知识图谱的商品推荐系统旨在以个性化商品推荐模型为基础,使用B/S架构的形式实现。个性化推荐模型使用了CNN等传统机器学习领域算法进行商品推荐的,来标识用户的商品偏好,然后在此基础上引入了一个Flask方面深度学习库deepLearning4j来实现对商品特征提取,对商品进行标签化,分为古典、流行等类别。可参考来进行混合推荐的。

图4-4 商品关系界面

在用户界面实现过程中,我们采用了前端技术栈,包括HTML、CSS等。通过合理的布局和样式设计,我们实现了美观、易用的用户界面。同时,我们注重了代码的可读性和可维护性,以确保系统的稳定性和可扩展性。

4.2.4商品谱图管理

基于知识图谱的商品推荐系统旨在以个性化商品推荐模型为基础,使用B/S架构的形式实现。个性化推荐模型使用了CNN等传统机器学习领域算法进行商品推荐的,来标识用户的商品偏好,然后在此基础上引入了一个Flask方面深度学习库deepLearning4j来实现对商品特征提取,对商品进行标签化,分为古典、流行等类别。可参考来进行混合推荐的。

图4-4 商品图谱界面

4.3 本章小结

本章主要分析了基于知识图谱的商品推荐系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍后台系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。本章我们已完成商品推荐后台开发工作,将会给用户带来一定的便利,同时本系统还为用户提供个人信息管理,就业数据查询等功能,这样做便使得该系统成为功能相对完整,业务逻辑清晰。

5 总结与展望

6.1 总结 

本文重点阐述和研究了基于用户行为分析的个性化推荐的相关理论和算法,设计和实现了一个个性化商品推荐系统,现将本文的主要工作总结如下:

商品特征提取: 利用CNN对商品图像、描述文本等进行特征提取,捕捉商品的视觉和语义信息。这将有助于更全面地了解商品之间的相似性和差异性。

用户特征提取: 将用户的历史行为序列通过CNN进行处理,提取用户的深度兴趣特征。这有助于理解用户的个性化偏好,从而更准确地为其推荐商品。

知识图谱构建: 将商品和用户的深度特征整合到商品知识图谱中,形成节点和边的关联关系。这将为推荐算法提供更丰富的信息,提高系统的智能化水平。

推荐系统性能提升: 通过综合商品和用户的深度特征,预期推荐系统能够更准确、个性化地为用户提供商品推荐。提高推荐的准确性和用户满意度是预期的系统性能改进。

解决冷启动问题: 利用深度特征的学习能力,预期能够更好地应对新用户或新商品的冷启动问题,提供更有针对性的推荐。

通过充分利用卷积神经网络和知识图谱技术,预期的结果是构建一个更智能、更精准的商品推荐系统,提升用户体验,促进电商平台的业务增长。

6.2 展望 

(1)学习研究知识图谱,研究用户行为数据的利用,提高推荐效能。本文只用到了众多知识图谱中的两个,以后在学习中不仅要对单个算法深入研究,还要研究算法的融合,用多种算法为用户作出有价值的推荐。

(2)对于冷启动、系统扩展性等问题进行进一步的考虑。 虽有研究人员报告称,只要用户喜欢你的产品,就会不断贡献新的数据,从而不必关心冷启动。但实际系统中要让用户获得较好的体验效果,我们还是应该认真对待这个问题。对于扩展性,可以采用分布式计算的方法来加以解决。


参考文献

[1] 姜建武, 李景文, 陆妍玲,等. 基于大数据的信息智能推送方法[J]. 微型机与应用, 2016(23):86-89.

[2] 张钧. 基于大数据的就业知识发现服务研究[J]. 图书与情报, 2017, 000(006):60-63.

[3] 郝胜宇, 陈静仁. 大数据时代用户信息助力企业实现精准化营销[J]. 中国集体经济, 2016, 000(004):61-62.

[4] 李映坤. 大数据背景下数据的统计方法实践研究[D]. 2016.

[5] 余孟杰. 产品研发中数据的数据模建——从具象到抽象[J]. 设计艺术研究, 2014, 4(006):60-64.

[6] 雷兵, 常知刚, 钟镇. 基于网络店铺订单数据的大数据平台构建研究[J]. 河南工业大学学报(社会科学版), 2019, v.15;No.61(01):58-65.

[7] 牛温佳. 用户网络行为画像[M]. 电子工业出版社, 2016.

[8] 张慷. 商品推荐信息在大数据平台的实现方案[J]. 信息通信, 2014(02):266-267.

[9] wikipedia. Mel-frequency cepstrum.htp:/n.wikipedia. org/wiki/Mel-frequency cepstrum/[OL]. 2014.03

[10]邹益、基于内容的音频检索研究[D].南京:南京理工大学. 2007

[11]庄严,于凤芹,结合节拍语义和MFCC声学特征的商品流派分类[J].计算机工程与应用2013.08

[12] Rakesh Agrawal, Tomasz Imielinski, Arun Swami. Mining asciation nules between sets ofitems in large databases[C]. 1993 ACM SIGMOD Conference. 1993.

[13] 王静基于关联规则的图书销售网站个性化推荐系统设计与实现[D].成都:电子科技大学.2012.03

[14]邓先箴.基于关联规则的知识图谱研究与应用[D]上海:华东师范大学2009.10

[15]王国霞,刘贺平,个性化推荐系统综述[].计算机工程与应用,2012.48(7). 6-76.

[16] Toby Segaran著,莫映,王开福译.集体智慧编程[M].电子工业出版社.2009.01

[17] Francesco Ricci, Lior Rokaach, Bracha Shapira, et al. Recommender Systems Handbook[M].Springer. 2011

[18] 付超群.Openslopeone. http://code.google.com/ p/openslopeone/[OL].2009.02

[19]项亮.推荐系统实践[M].人民邮电出版社. 2012.06

[20] Yehuda Koren, Robert Bell and Chris Volinsky. Matrix Factorization Techniques forRecommender Systems. IEEE press. 2009.08, 30-37

致  谢

四年的大学时光,我不仅学习到了专业方面的相关知识,进一步扩充了眼界,更重要的是掌握了学习知识的能力,使我从多方面提升了自身能力。这些中除了知识方面的,我还学习到了为人处事的方法。

在整个写论文的过程中,前期搜寻了大量的相关资料,使我逐步了解到了当前形势下的就业困难现状以及设计与实现基于知识图谱的商品推荐系统的重要性,并明确了前进方向。虽然在后期遇到很多困难,我都努力去克服,最终得到学习能力、思考能力等各项综合的很大提升。

这其中,我得到了多方面的帮助。有导师的细心指导,同学的帮助关心以及在论文中借鉴的前人的部分成果,在此表示感谢。

附  录

附录正文。

  • 11
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值