6.3 后台管理………………………………………………………………………...
6.3.1.1 查询功能..............................................................................................................26
6.3.1.2 详细描述..............................................................................................................26
6.3.3 权限管理...........................................................................................................................26
休闲女装快手评论数据抓取及分析的设计与实践
摘要: 本论文旨在研究女装账号数据的获取、存储、清洗和可视化展示,并设计用户交互界面以提供数据图表的查看功能。首先,通过编写爬虫程序,自动从快手网站获取关于女装账号的数据,包括账号头像、账号名字、账号简介、作品数量、粉丝数量和关注的账号数量等。其次,将爬取得到的数据存储至数据库中,以便后续进行数据分析和可视化处理。然后,对获取的数据进行清洗,去除不必要和重复的信息,并修复错误的数据,以保证数据的准确性、完整性、简洁性和实用性。接下来,基于获取到的女装账号数据,设计合适的可视化图表,如折线图、柱状图等,用于展示不同博主在不同维度上的对比情况,以使数据更加直观地呈现出来。最后,设计一个用户界面,利用Python的Web框架Flask搭建简单的前端页面,使用户能够选择感兴趣的维度来查看不同账号之间的对比情况。通过本研究,可以提供一个全面而直观的女装账号数据分析与展示平台,为相关行业提供决策支持和市场洞察。
本文设计了休闲女装快手评论数据后台分析可视化系统,本系统的核心功能是通过爬取快手休闲女装评论数据的原始数据,并通过大数据技术将原始数据存储、计算,并将分析的结果以分类预测列表形式展示。
关键词:女装评论;Flask; Python;可视化
Design and implementation of data capture and analysis of casual women's Kwai reviews
Abstract: This paper aims to study the acquisition, storage, cleaning, and visual display of women's clothing account data, and design a user interaction interface to provide the function of viewing data charts. First, by writing a crawler program, we can automatically obtain data about women's clothing accounts from the Kwai website, including account avatar, account name, account profile, number of works, number of fans, and number of accounts we follow. Secondly, store the crawled data in the database for subsequent data analysis and visualization processing. Then, the obtained data is cleaned to remove unnecessary and duplicate information, and erroneous data is fixed to ensure accuracy, completeness, conciseness, and practicality. Next, based on the obtained women's clothing account data, design appropriate visual charts, such as line charts, bar charts, etc., to display the comparison of different bloggers in different dimensions, in order to present the data more intuitively. Finally, design a user interface using the Python web framework Flask to build a simple front-end page, allowing users to choose the dimensions of interest to view the comparison between different accounts. Through this study, a comprehensive and intuitive platform for analyzing and displaying women's clothing account data can be provided, providing decision-making support and market insights for related industries.
This paper designs a background analysis visualization system for casual women's Kwai review data. The core function of this system is to crawl the original data of Kwai casual women's review data, store and calculate the original data through big data technology, and display the analysis results in the form of classified prediction list.
Keywords: casual women's clothing review data; Flask; Python; visualization
1.1项目背景及意义
女装数据分析系统的研究背景可以从两个方面来解释:时尚产业和数据分析技术。
首先,时尚产业是一个庞大而复杂的行业,涉及到设计、生产、营销、销售等多个环节。在这个行业中,了解市场需求、消费者喜好以及流行趋势等信息至关重要。传统上,时尚产业主要依赖经验和直觉来做出决策,但随着科技的发展和数据的广泛应用,数据分析在时尚产业中扮演着越来越重要的角色。女装数据分析系统的研究就是为了利用数据分析技术来提供决策支持,帮助时尚用户更好地了解市场和消费者,提高产品的竞争力和销售业绩。
其次,数据分析技术的快速发展为女装数据分析系统的研究提供了有力支持。随着互联网和移动设备的普及,人们在购物、社交媒体等方面产生了大量的数据。这些数据包含了大量有关消费者行为、喜好和趋势的信息。通过运用数据分析技术,可以从这些数据中提取有价值的信息,帮助时尚用户做出更明智的决策。女装数据分析系统的研究旨在将数据分析技术应用于时尚产业,挖掘潜在商机,提高用户的市场竞争力。
综上所述,女装数据分析系统的研究背景主要源于时尚产业对市场和消费者信息的需求,以及数据分析技术的快速发展。通过结合这两个领域的知识和技术,女装数据分析系统可以为时尚用户提供更好的决策支持,推动行业的发展。
目前快手网的数据一般有以下特点:
一、 数据量增长迅猛:互联网的迅速发展,数据量正在以指数级增长,互联网公司每年都会产生大量的数据。以前没有并行存储计算的时候,这些数据要么丢弃掉,要么进行归档封存。
二、数据的多样性:我们传统意义上的数据可能会存储在数据库中的关系型数据,如用户信息,订单信息等。但目前数据格式上多种多样,特别是应用日志,很多都是以Json格式来进行存储。Json 格式数据中也会有List等等结构。所以数据结构的复杂程度也越来越高。
三、数据来源丰富:以前我们分析的数据基本都是存储在关系型数据库中。如Oracle或者Mysql.现在关系型数据库中的数据已经成为数据来源的一种方式。 更多的数据来源于应用日志,评论数据,网站访问行为等数据。
基于以上三点,传统的关系型数据库已经没有办法来进行处理了。所以就迫切需要一种能够存储海量数据的分布式web系统。Flask便成为首选的技术解决方案。
总而言之,从上述问题可以看出目前互联网休闲女装评论数据平台信息缺乏整合,用户在冗杂的休闲女装评论数据中难以筛选出有效的信息。本论文拟初步研究开发出一套完整的基于Python平台的快手女装评论平台信息分析系统,本系统主要用于对休闲女装评论数据和相关信息进行采集,通过大数据平台对数据进行存储和计算,将指标分析和预测结果以分类预测形式给用户查询。这样,用户在使用本平台时只需一次注册操作,即可浏览各平台发布的休闲女装评论数据,并且可以根据用户的条件进行筛选,可极大的提高查询快手女装评论效率,给查询快手女装评论的用户都带来一定的便利。
1.2国内外研究现状
女装数据分析系统的国内研究现状可以总结为以下几个方面:
数据采集与处理:国内的女装数据分析系统研究注重从多个渠道收集数据,包括线上销售平台、社交媒体、市场调研等。同时,研究者还关注如何处理和清洗大规模的数据,并建立合适的数据仓库和数据挖掘平台。
用户行为分析:国内的研究致力于对消费者在购买女装时的行为进行深入分析。这包括用户的浏览、搜索、点击、加购物车、购买等行为,通过数据分析技术,挖掘出用户的购买偏好、消费习惯和需求特征。
时尚趋势分析:国内的女装数据分析系统研究也关注时尚趋势的分析和预测。通过分析海量的时尚图片、时尚杂志、社交媒体信息等,研究者尝试识别潜在的流行趋势,并为设计师和品牌提供时尚灵感和市场预测。
个性化推荐与营销:国内的研究还致力于个性化推荐和营销策略的研究。通过分析用户的购买历史、喜好、社交网络等信息,研究者试图为用户提供个性化的商品推荐和定制化的购物体验。
可视化与决策支持:国内的女装数据分析系统研究也注重如何将复杂的数据分析结果以可视化的方式呈现,并为决策者提供直观的决策支持工具。这些工具可以帮助时尚用户更好地理解市场和消费者,做出合适的战略决策。
总体而言,国内的女装数据分析系统研究正处于快速发展阶段。研究者们正在探索如何利用数据分析技术,在时尚产业中提供更智能、精准的决策支持,以应对市场竞争的挑战。
女装数据分析系统的国外研究现状也非常活跃,以下是一些主要方面的概述:
市场趋势预测与消费者行为分析:国外的研究注重通过数据分析技术来预测市场趋势和分析消费者行为。例如,利用机器学习和深度学习技术来挖掘社交媒体、时尚博客和论坛等渠道中的信息,预测下一季的流行趋势,并分析消费者对不同品牌、设计师和风格的偏好。
可视化与虚拟试衣:国外的研究致力于将数据分析结果以可视化的方式呈现,帮助设计师和品牌更好地理解市场需求和消费者喜好。此外,还有一些研究关注虚拟试衣技术,通过计算机图形学和虚拟现实技术,让消费者在网上购物前可以模拟试穿衣服,提高购物体验和减少退货率。
智能推荐和个性化营销:国外的研究侧重于开发智能推荐系统和个性化营销策略。通过分析消费者的购买历史、喜好、点击行为等数据,研究者致力于构建个性化的商品推荐系统,为消费者提供更符合其兴趣和需求的产品。
可持续时尚与环境影响分析:国外的研究还关注可持续时尚和环境影响分析。研究者试图通过数据分析技术来评估时尚产业对环境的影响,并提出可持续发展的解决方案。这包括从供应链到产品生命周期的各个环节进行数据分析,以减少资源消耗、提高生产效率和推动可持续时尚发展。
总体而言,国外的女装数据分析系统研究也非常活跃。研究者们利用先进的数据分析技术和技术手段,致力于提升时尚产业的竞争力、用户体验和可持续发展。他们通过深入分析市场和消费者行为,为品牌和设计师提供更准确的市场洞察和决策支持。
1.3主要研究内容和方法
系统化的掌握各阶段数据处理流程及相关方法,进一步提高数据分析综合应用能力, 最后通过数据可视化及数据报告形式进行成果展示;了解女装行业快手号数据,熟悉快手平台数据抓取规则; 主要内容:
- 研究女装行业快手号的共性;
- 抓取行业多个的快手号数据;
- 分析其发布的内容、发布频次、文章评论;
4、通过多维度数据挖掘与分析,对主题数据做聚类、分类或关联分析,同时支持重要 指标的多维度可视化展示。
1.4论文的组织结构
本课题主要是解决在女装分析中的各种问题,通过多维度数据挖掘与分析,对主题数据做聚类、分类或关联分析,同时支持重要 指标的多维度可视化展示
第1章:首先描述了背景和意义,再从时间线一步步发展,分国内外讲述女装分析系统现状。
第2章:是对女装分析系统中不同角色进行需求分析,并且描述该系统开发所需要用的技术知识和环境要求,以及从不同方面(经济可行性、技术可行性和操作可行性)对照系统进行分析。
第3章:系统总体框架构成和实体图、E-R图。
第4章:从不同模块进行具体分析,进行数据库表设计,列举出该系统的难点和创新点分析。
第5章:根据模块进行具体实现和测试,展示了系统效果图和使用说明。
第6章:是自己做完整个系统的一些总结和感受,以及分析整个系统的不足和优化方式。
1.5本章小结
本章主要是解决在女装分析中的各种问题,首先描述了背景和意义,再从时间线一步步发展,分国内外讲述女装分析系统现状,最后对研究内容和方法作了进一步阐述。
2.1 Flask
Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。它可以很好地结合MVC模式进行开发,开发人员分工合作,小型团队在短时间内就可以完成功能丰富的中小型网站或Web服务的实现。另外,Flask还有很强的定制性,用户可以根据自己的需求来添加相应的功能,在保持核心功能简单的同时实现功能的丰富与扩展,其强大的插件库可以让用户实现个性化的网站定制,开发出功能强大的网站。
Flask是目前十分流行的web框架,Flask框架的主要特征是核心构成比较简单,但具有很强的扩展性和兼容性,程序员可以使用Python语言快速实现一个网站或Web服务。一般情况下,它不会指定数据库和模板引擎等对象,用户可以根据需要自己选择各种数据库。Flask自身不会提供表单验证功能,在项目实施过程中可以自由配置,从而为应用程序开发提供数据库抽象层基础组件,支持进行表单数据合法性验证、文件上传处理、用户身份认证和数据库集成等功能。
Flask主要包括Werkzeug和Jinja2两个核心函数库,它们分别负责业务处理和安全方面的功能,这些基础函数为web项目开发过程提供了丰富的基础组件。Werkzeug库十分强大,功能比较完善,支持URL路由请求集成,一次可以响应多个用户的访问请求;支持Cookie和会话管理,通过身份缓存数据建立长久连接关系,并提高用户访问速度;支持交互式Javascript调试,提高用户体验;可以处理HTTP基本事务,快速响应客户端推送过来的访问请求。Jinja2库支持自动HTML转义功能,能够很好控制外部黑客的脚本攻击。系统运行速度很快,页面加载过程会将源码进行编译形成Python字节码,从而实现模板的高效运行;模板继承机制可以对模板内容进行修改和维护,为不同需求的用户提供相应的模板。目前Python的web框架有很多。除了Flask,还有django、Web2py等等。其中Django是目前Python的框架中使用度最高的。但是Django如同java的EJB(EnterpriseJavaBeansJavaEE服务器端组件模型)多被用于大型网站的开发,但对于大多数的小型网站的开发,使用SSH(Struts+Spring+Hibernat的一个JavaEE集成框架)就可以满足,和其他的轻量级框架相比较,Flask框架有很好的扩展性,这是其他Web框架不可替代的。
图2-1 Flask框架工作过程图
2.2 爬虫技术
Scrapy是目前较为成熟的爬虫技术框架,一般采用Python语言开发程序,Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
在本设计中,由于需要使用到快手女装评论网站的原始数据,因此需要开发相应的网络爬虫程序完成对原始数据的采集,图2-1为爬取网站的休闲女装评论数据的原理流程图。
图2-2 快手女装评论爬虫原理流程图
MySQL是关系型数据库管理系统(RDBMS),是RDBMS中最流行的一种,且许多操作系统上都能运行 MySQL。安装容易,运营成本低,便于维护。与其他大型数据库相比,对初学者更加友好,容易学习。与此同时,MySQL也是网络应用的最佳RDBMS之一[14]。
2.4 数据挖掘技术
文本挖掘指的是从文本数据中获取有价值的信息和知识,它是数据挖掘中的一种方法。文本挖掘中最重要最基本的应用是实现文本的分类和聚类,前者是有监督的挖掘算法,后者是无监督的挖掘算法。
文本挖掘是一个多学科混杂的领域,涵盖了多种技术,包括数据挖掘技术、信息抽取、信息检索,机器学习、自然语言处理、计算语言学、统计数据分析、线性几何、概率理论甚至还有图论。
在理解文本信息的问题上,由于信息量的庞大,如果仅凭人工方式来收集和挖掘文本数据,不仅需要消耗大量的人力和时间,而且也是很难实现的。于是,实现自动文本分类就显得尤其重要,它是文本信息挖掘的基本功能,也成为了处理和组织文本数据的核心技术。
二、文本分类过程分类问题包括学习和分类两个过程,学习过程的目标是根据已知的训练数据构建分类模型,得到分类器;分类过程的任务是利用学习得到的分类器,预测新数据实例的类标号。图2-3是分类问题的描述图。
图2-3 文本分类原理
学习系统以训练数据为基础,从中学习得到分类器模型,它处理的对象是文本,任务是将新输入文本自动划分到一个或多个预先定义的类别中。因此,文本分类问题可以简略用图2-4 表示:
图2-4 文本分类简图
从图中可以看出,文本分类中包含两个关键问题:一是文本表示,二是分类器设计 。
2.4 本章小结
本章主要分析了基于Flask的女装分析可视化分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的女装分析可视化分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是html实现。
第3章 系统的分析
3.1系统可行性分析
在深入了解一个用户的运行状况和管理方式之后,为了更好的对用户运作进行分析。从经济可行性、技术可行性和操作可行性三个角度对女装分析系统进行了探讨。
女装数据分析系统的社会可行性分析主要从以下几个方面来考虑:
市场需求:女装数据分析系统是针对时尚产业的一个创新性产品,其市场需求和潜在用户群体需要充分调研和评估。通过市场调查和用户反馈,可以了解到该系统是否符合市场需求,并进一步优化和完善其功能。
商业模式:女装数据分析系统需要有一个可行的商业模式来实现商业化运营和盈利。例如,可以通过订阅服务、广告收入或数据销售等方式来获得收益。同时,还需要考虑如何保护用户隐私,并严格遵守相关法律法规。
技术可行性:女装数据分析系统需要具备先进的数据分析技术和技术手段来支持其功能实现。需要评估其技术可行性和稳定性,以确保系统能够长期稳定地运行,并提供高质量的数据分析结果。同时,还需要考虑如何保证数据的安全性和隐私保护。
社会价值:女装数据分析系统能够为时尚产业和消费者提供实际的价值,如帮助品牌和设计师更好地了解市场需求和消费者偏好,提高产品设计和营销的精准性和效率,提升消费者购物体验和提高消费者满意度。这些价值对于时尚产业的发展和社会的进步都有积极的影响。
可持续发展:女装数据分析系统需要注重可持续发展,包括从数据收集、存储、处理到分析和展示的各个环节中,采取可持续发展的方法和措施。例如,通过优化数据采集和处理流程,减少资源消耗和能源浪费,推动时尚产业向更加可持续的方向发展。
综上所述,女装数据分析系统具备一定的社会可行性,但还需要进一步完善商业模式、保障技术稳定性和数据安全性,并注重可持续发展,以实现其长期发展和社会价值的最大化。
本系统应用的开发使用了MySQL作为女装分析系统相关数据的存储中心。采用的语言是稳定的Python语言,整体开发架构是:后端使用的是:Flask框架,Flask目前被许多大公司使用,是一个可靠的技术框架,前端使用的echarts组件等,操作流畅、运行速度快。因此,该系统在技术上是足够可行的。
女装分析系统主要目的是为了使公司能够很好地管理库存,确保销售利润最大化,降低公司成本,及时知晓公司的快手女装评论状况。目前,有些用户还在人工管理阶段,每天都要用纸笔,但这样做费时、费人力,还会造成其它问题,比如,会造成资料遗失或错误记录。因此,要真正达到规模效益,节省用户成本,用户就需要提高信息化管理水平,这样,才能提高核心竞争力[11],这时,女装分析系统就可以为用户提供很好的帮助,来保证用户管理的效率,同时,为用户争取更高的利润。并且自动化的一个盈利分析也让公司更清楚、更直观地了解目前阶段用户的发展水平,从而提高公司的盈利能力[12]。
3.2系统需求分析
女装分析系统中主要有两类用户:管理员、普通人员。每一类用户都有自己的权限,不同用户登陆系统后显示的菜单栏是不同的,显示每一类用户所对应的模块。
女装数据分析系统的功能性需求包括以下几个方面:
数据采集:女装数据分析系统需要从快手等平台收集女装账号的相关数据,包括账号头像、账号名字、账号简介、作品数量、粉丝数量和关注的账号数量等。
数据存储:女装数据分析系统需要将采集到的数据存储在数据库中,以便后续进行数据分析和可视化处理。
数据清洗:女装数据分析系统需要对采集到的数据进行清洗,去除不必要和重复的信息,并修复错误的数据,以保证数据的准确性、完整性、简洁性和实用性。
数据分析:女装数据分析系统需要对清洗后的数据进行分析,并提供多种数据分析方法和工具,如聚类分析、相关性分析、回归分析、趋势分析等,以帮助用户深入了解女装市场的情况
可视化展示:女装数据分析系统需要提供可视化展示功能,将分析结果以图表形式展现出来,如折线图、柱状图、饼图等,以便用户直观地了解数据分析结果。
用户交互界面:女装数据分析系统需要设计用户交互界面,以便用户能够选择感兴趣的维度来查看不同账号之间的对比情况,如账号粉丝数、作品数量、关注数等。
数据导出:女装数据分析系统需要提供数据导出功能,以便用户将分析结果导出至Excel或其他格式,以便进一步的数据处理和分析。
数据安全性:女装数据分析系统需要保证数据的安全性,包括加密存储、访问权限控制、备份恢复等,以防止数据泄露和损失。
系统稳定性:女装数据分析系统需要保证系统的稳定性,避免因系统故障或崩溃而导致数据丢失和服务中断。
以上是女装数据分析系统的功能性需求,通过这些功能能够帮助用户更好地了解女装市场的情况,为相关行业提供决策支持和市场洞察。
女装数据分析系统的非功能需求包括以下几个方面:
可靠性:女装数据分析系统需要具备高可靠性,即能够在长时间运行中保持稳定和可用性,并且能够及时处理大量的数据。
安全性:女装数据分析系统需要保护用户的隐私和敏感数据安全,采取合适的数据加密和访问控制措施,防止未经授权的访问和数据泄露。
性能:女装数据分析系统需要具备良好的性能,包括数据处理速度快、响应时间短,能够支持大规模数据分析和多用户并发访问。
扩展性:女装数据分析系统需要具备良好的扩展性,能够根据需求进行水平或垂直的扩展,以适应不断增长的数据量和用户数量。
用户友好性:女装数据分析系统需要具备良好的用户界面和用户体验,使用户能够方便地操作和使用系统,同时提供清晰的指导和帮助文档。
可维护性:女装数据分析系统需要具备良好的可维护性,包括代码的可读性、可测试性和可重用性,以便进行系统的升级、维护和修复。
兼容性:女装数据分析系统需要具备良好的兼容性,能够与不同的操作系统、数据库和浏览器等平台进行良好的集成和交互。
可移植性:女装数据分析系统需要具备良好的可移植性,能够在不同的环境中运行和部署,包括本地服务器、云服务或容器化平台等。
可扩展性:女装数据分析系统需要具备良好的可扩展性,能够根据用户需求灵活添加新的功能和模块,并与其他系统进行集成。
综上所述,女装数据分析系统的非功能需求主要包括可靠性、安全性、性能、扩展性、用户友好性、可维护性、兼容性、可移植性和可扩展性等方面,通过满足这些需求可以提高系统的质量和用户体验。
3.3本章小结
本章主要分析了基于Flask的女装分析可视化分析系统开发过程中一些系统可行性分析及系统需求分析。
4.1系统架构设计
女装数据分析系统的系统架构设计可以采用以下的层次结构:
图4-1 系统架构图
用户界面层:用户通过浏览器、移动应用或桌面应用与系统进行交互。该层负责用户输入的接收和展示数据分析结果的输出。
应用服务层:应用服务层是系统的核心,负责处理用户请求并进行数据分析。它包括以下子层:
用户管理:处理用户认证、授权和个人信息管理等功能。
数据采集:从不同渠道(如电商平台、社交媒体)获取女装相关数据,并进行清洗和预处理。
数据存储:负责将采集到的数据存储到合适的数据库中,可以使用关系型数据库或者分布式存储系统。
数据处理:对存储的数据进行处理、计算和分析,提取有用的信息和模式。
数据存储层:该层负责持久化存储系统所产生的数据,包括原始数据和分析结果。可以使用关系型数据库、NoSQL数据库或者分布式文件系统。
外部集成层:该层用于与外部系统进行集成,如第三方API服务、其他数据源和推送通知等。
基础设施层:基础设施层包括服务器、网络、存储设备和操作系统等基础设施组件,提供系统的运行环境。
通过以上的系统架构设计,女装数据分析系统能够实现用户与系统之间的交互、数据的采集、存储和处理,以及与外部系统的集成。同时,该架构也具备可扩展性、可维护性和高性能的特点,能够满足女装数据分析系统的需求。
4.2系统功能模块设计
图4-2 系统功能模块图
功能模块主要包括登录、基本信息管理、用户管理、女装分析等模块,具体如下表所示。
表4-1 管理员登陆
项 | 描述 |
描述 | 用户输入用户名和密码之后,系统判断是管理员角色,登录女装分析系统 |
基本流程 |
|
返回数据 | 管理员登陆结果集 |
表4-2基本信息管理
项 | 描述 |
描述 | 登录成功,进入系统的基本信息管理界面,可以对基本信息管理进行操作 |
基本流程 |
|
返回数据 | 基本信息结果集 |
表4-3 休闲女装评论数据管理
项 | 描述 |
描述 | 管理员可以进入快手女装评论管理界面,可以对快手女装评论信息管理进行操作 |
基本流程 |
|
返回数据 | 快手女装评论结果集 |
4.3系统业务流程设计
女装分析系统的业务流程设计主要包括以下几个环节:
用户登录和注册:用户首先需要进行注册或登录操作,以便使用系统的各项功能。用户可以通过注册页面注册账户,也可以通过社交账号或手机号码进行快速登录。
图4-3 登录认证流程图
数据采集和预处理:女装分析系统通过接入多种渠道(如电商平台、社交媒体等)获取女装相关数据,并进行清洗和预处理。对于不同类型的数据源,系统需要进行相应的处理和转换,以满足后续的分析需求。
图4-4 休闲女装数据管理流程图
数据存储和管理:系统将采集到的数据存储在数据库中,并进行管理和维护。数据存储方案应该具有高可用性、高扩展性和高安全性,同时能够支持大规模数据存储和访问。
数据分析和挖掘:女装分析系统通过数据挖掘和机器学习等技术,对存储的数据进行分析和处理,提取其中的价值信息。系统可以根据用户的需求进行不同类型的分析,如市场趋势分析、品牌竞争分析、商品质量评估等。
结果展示和报告生成:系统将分析结果以可视化的方式展示给用户,帮助用户更好地理解分析结果。同时,系统还可以根据用户需求生成定制化的分析报告,以帮助用户做出更明智的决策。
图4-5 休闲女装数据大屏分析流程图
交互和反馈:女装分析系统还需要提供用户交互和反馈机制,以便用户对系统进行反馈和建议。用户可以通过系统内部的消息系统、邮件或在线客服等方式与系统进行交互。
以上的业务流程设计充分考虑到了女装分析系统的核心业务,并提供了相应的功能模块和技术支持,以满足用户的分析需求。同时,还为系统的可扩展性和可维护性提供了保障。
4.4数据库的设计
数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下3个数据实体:用户、权限,女装评论数据等数据库表。
图4-6 休闲女装评论实体属性图
用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-6所示:
图4-7 用户实体属性图
图4-8 用户实体属性图
根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对女装分析可视化的管理,使女装分析可视化与用户实体存在对应关系。
图4-9 ER属性关系图
4.5本章小结
本章主要分析了基于Flask的女装分析可视化分析系统设计过程,包括系统架构设计,功能模块设计和业务流程设计及数据库设计等。
基于Flask的女装分析可视化分析平台的基本业务功能是采用Flask框架实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。
5.1项目结构
本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装快手女装评论端软件,交互性更强。基于Flask的女装分析可视化分析平台使用Pycharm集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行.本系统的主要开发环境以及开发工具如表5-2所示。
表5-2 系统开发环境和工具
项目 | 系统环境及版本 |
硬件环境 | Windows 64 位操作系统 |
Python | Python2.6 |
数据库 | MySql |
开发工具 | Pycharm |
5.2数据采集和预处理模块
这个项目我们的主要目的是爬取中国海洋网的休闲女装评论数据信息,包括快手女装评论数据、用户名称和用户描述和规模等具体详情信息,下面描述本文爬虫工程主要设
计步骤。
(1)创建项目
打开一个终端输入:scrapy startproiect python_ zgc _data,Scrapy框架将会在指定目录下生成整个工程框架。系统生成的目录如下图5-3所示:
图5-3 爬虫框架目录结构
(2)修改setting文件
如图5-4所示为修改后的setting文件主要内容,本设计主要修改三项内容,
第一个是不遵循机器人协议,第二个是下载间隙,由于下面的程序要下载多个页
面,所以需要给一个间隙(不给也可以,只是很容易被侦测到),第三个是请求
头,添加一个User-Agent。
表5-4 爬虫setting文件主要配置
BOT_NAME = 'python_city_data' SPIDER_MODULES = ['python_city_data.spiders'] NEWSPIDER_MODULE = 'python_city_data.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'python_city_data (+http://www.yourdomain.com)' #换伪造请求头 USER_AGENT = "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36" # Obey robots.txt rules ROBOTSTXT_OBEY = False |
(3)确认要提取的数据,item 项
item定义你要提取的内容(定义数据结构),比如我提取的内容为休闲女装评论数据的所在城市和用户快手女装评论详情,于是需要在items类中新建对应的实体类,并需要设置相应的字段取出对应的数据。Field 方法实际上的做法是创建一个字典,给字典添加一个建,暂时不赋值,等待提取数据后再赋值。
(4)开发爬虫程序,访问下载网页,使用Xpath语法提取内容
5.3 数据可视化分析模块
本文在设计快手女装评论分类预测模型中选用的是Pandas软件中的神经网络工具包,在确定好神经网络结构以后,将数据输入到模型训练后就可以对快手女装评论分类进行分类。
1、分词:一般而言,所有的NLP任务基本上都会做分词,因为词是一个最小的语义单元。
2、去停用词:很多词对于分类任务没有效果,所以可以提前去掉,目前一些通用的停用词词典大概有2000个词,主要包括一些副词、形容词以及连接词。
3、归一化:把一些数字全部归一为"DIGIT",时间归一为“TIME",url链接归一化"URL",虽然不同的数字代表不同含义,但在很多分类任务而言,其实都一样,这可以减少词典大小,当然也看具体任务,可以自己找些规则出来。
4、词性标注:在文本比较短的情况下,单纯的文本信息太少,这种情况下一般会把词性也作为特征输入分类器。
表5-2 文本分析流程图
本文中如需分析目前快手女装评论网站上的各行各业的快手女装评论数据总量情况,首先需要定义一个任务中的核心逻辑,需要在代码中对每条休闲女装评论数据的里程字段过滤,下面为分析任务的主要逻辑代码。
表5-5 主要模型类
# 创建模型 class RolesUsers(db.Model): __tablename__ = 'roles_users' id = db.Column(db.Integer, primary_key=True) user_id = db.Column('user_id', db.Integer, db.ForeignKey('user.id')) role_id = db.Column('role_id', db.Integer, db.ForeignKey('role.id')) def __repr__(self): return "<{} 用户 {} 权限>".format(self.user_id,self.role_id) class Role(db.Model, RoleMixin): __tablename__ = 'role' id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(80), unique=True) description = db.Column(db.String(255)) def __repr__(self): return "<{} 权限>".format(self.name) class User(db.Model, UserMixin): __tablename__ = 'user' id = db.Column(db.Integer, unique=True, primary_key=True) username = db.Column(db.String(255)) email = db.Column(db.String(255), unique=True) password = db.Column(db.String(255)) active = db.Column(db.Boolean()) confirmed_at = db.Column(db.DateTime()) roles = db.relationship('Role', secondary='roles_users', backref=db.backref('user', lazy='dynamic')) def __repr__(self): return "<{} 用户>".format(self.username) class XinXi(db.Model): __tablename__ = 'xinxi' id = db.Column(db.Integer, unique=True, primary_key=True) Date = db.Column(db.DateTime()) WD = db.Column(db.Float) WSPD = db.Column(db.Float) GST = db.Column(db.Float) WVHT = db.Column(db.Float) DPD = db.Column(db.Float) APD = db.Column(db.Float) BAR = db.Column(db.Float) ATMP = db.Column(db.Float) WTMP = db.Column(db.Float) 地区 = db.Column(db.String(255)) def __repr__(self): return "<{} 数据>".format(self.Date) class Item(db.Model): __tablename__ = 'Item' id = db.Column(db.Integer, unique=True, primary_key=True) Date = db.Column(db.DateTime()) WD = db.Column(db.Float) WSPD = db.Column(db.Float) GST = db.Column(db.Float) WVHT = db.Column(db.Float) DPD = db.Column(db.Float) APD = db.Column(db.Float) BAR = db.Column(db.Float) ATMP = db.Column(db.Float) WTMP = db.Column(db.Float) 地区 = db.Column(db.String(255)) def __repr__(self): return "<{} 历史数据>".format(self.Date) if __name__ == '__main__': # db.drop_all()#清除表 db.create_all()#创建表 # 设置flask-security user_datastore = SQLAlchemySessionUserDatastore(db.session, User, Role) security = Security(app, user_datastore) user_datastore.create_role(name='admin',description='管理员')#注册管理员权限 user_datastore.create_role(name='User', description='普通用户')#注册用户权限 db.session.commit() new_user = user_datastore.create_user(username='admin', password='root123456',email='123@qq.com',active=True)#注册管理员 normal_role = user_datastore.find_role('admin') db.session.add(new_user) user_datastore.add_role_to_user(new_user, normal_role) db.session.commit() |
上述代码中,首先使用pandas库读取女装评论数据,并假设数据中有一列为'polarity'表示情感极性。然后通过value_counts()方法统计不同情感极性的评论数量。最后使用matplotlib.pyplot库绘制柱状图,展示情感极性分布情况。
根据实际情况,你可以根据需要进行数据分析和特征提取,然后使用合适的图表类型进行可视化展示。代码中的示例仅供参考,具体的数据分析和可视化方式需要根据你的数据和需求进行调整。
表5-6 分析核心类
import pandas as pdimport matplotlib.pyplot as plt # 读取女装评论数据 data = pd.read_csv('female_clothing_reviews.csv') # 数据分析和特征提取(示例:情感极性分析)# 假设数据中有一列为'polarity'表示情感极性,取值范围为[-1, 1],-1表示负面情感,1表示正面情感 # 统计不同情感极性的评论数量 polarity_counts = data['polarity'].value_counts() # 可视化展示 plt.figure(figsize=(6, 4)) plt.bar(polarity_counts.index, polarity_counts.values) plt.xlabel('Polarity') plt.ylabel('Count') plt.title('Sentiment Polarity Distribution') plt.show() |
5.4登录与注册
女装分析系统的用户注册和登录是系统中非常重要的功能,下面是一个关于用户注册和登录的简要描述:
用户注册: 用户打开女装分析系统的网页或应用程序,可以选择进行新用户注册。在注册页面,用户需要提供以下信息:
用户名:用于登录和标识用户身份的唯一名称。
密码:用于保护用户账户安全的密码,需要符合一定的复杂度要求。
邮箱地址:用于接收系统通知和找回密码等操作的有效邮箱地址。
其他个人信息(可选):如性别、年龄、喜好等,用于系统个性化推荐和服务。
用户在填写完必要信息后,点击注册按钮完成注册操作。系统会对注册信息进行验证和处理,确保信息的合法性和安全性。
用户登录: 已注册用户在系统的登录页面输入用户名和密码进行登录。系统会对用户提供的信息进行验证,检查用户名和密码是否匹配。如果验证通过,用户将被授权访问系统的其他功能和数据。
登录成功后,系统会为用户生成一个身份令牌或会话ID,用于在用户与系统之间建立安全连接,并保持用户的登录状态。这个令牌或会话ID在用户的每次请求中都会被发送到服务器,以验证用户的身份和权限。
登录过程中还可以实现其他功能,如记住密码、自动登录等,提高用户使用系统的便利性和体验。
需要注意的是,在用户注册和登录过程中,系统应该采取一系列安全措施,如密码加密存储、防止暴力破解、账户安全提示等,以保护用户信息和系统安全。同时,还应遵守相关法律法规,保护用户隐私。
5.5可视化分析模块
本章主要分析了基于Flask的女装分析可视化分析系统设计过程,包括系统架构各模块设计,数据采集设计,数据分析的实现,数据可视化实现等。
在分析系统界面中,如图5-8所示, 通过“大屏分析”按钮,进入女装分析可视化分析界面,用户可以看到女装分析可视化列表,例如:不同情感评论数量、不同视频评论数量、前十评论人评论数量、各评论情感视频播放量、前十视频播放量如图5-9、5-10所示。通过此界面,用户可以对女装分析可视化进行删除管理操作。
图5-8分析系统界面
图5-9 女装分析可视化分析界面1
图5-10 女装分析可视化分析界面2
5.6女装分析可视化看板功能
数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的
数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结
构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式
进行展示,从而形象直观地表达数据蕴含的信息和规律。
女装分析可视化大数据分析可视化开发的难点并不在于图表类型的多样化,而在于如何能在简单的一页之内让用户读懂女装分析可视化数据之间的层次与关联,这就关系到布局、色彩、图表、动效的综合运用。如排版布局应服务于业务,避免为展示而展示;配色一般以深色调为主,注重整体背景和单个视觉元素背景的一致性。本文使用Echarts中地图、线条等组件,将分析结果较为直观的展示给平台用户,使得用户能够简便的获取有效的信息。
5.7女装分析可视化的作用
此可视化分析主要围绕视频的情感、视频的评论数量、视频的播放量以图文的形式呈现出来,可以更直观明了的了解到不同情感的评论数量、不同视频的评论数量、视频播放量最高的是哪些,帮助我们更容易从中想得到休闲女装的视频的相关信息。
5.8本章小结
本章主要分析了基于Flask的女装分析可视化分析系统设计过程,包括系统架构各模块设计,数据采集设计,数据分析的实现,数据可视化实现等。
6.1注册功能
用户打开女装分析系统的网页或应用程序,可以选择进行新用户注册。在注册页面,用户需要提供以下信息:
用户名:用于登录和标识用户身份的唯一名称。
密码:用于保护用户账户安全的密码,需要符合一定的复杂度要求。
邮箱地址:用于接收系统通知和找回密码等操作的有效邮箱地址。
其他个人信息(可选):如性别、年龄、喜好等,用于系统个性化推荐和服务。
该后台注册功能,通过向后台注册接口发送请求,如图6-1是后台注册界面。登陆成功,则提示注册成功,并跳转到快手女装评论登录界面,如图6-2所示。
图 6-1 后台注册页面截图
图 6- 2 登录页面
6.2登录功能
该功能是用于用户登陆女装分析系统,当用户输入用户名和密码之后,经过数据校验,成功则进入主页面。
该后台登录功能,通过向后台登录接口发送请求,如图6-2是后台登录界面。登陆成功,则提示登陆成功,并跳转到后台管理界面,如图6-3所示。
图 6-3管理信息界面
6.3后台管理系统
6.3.1 数据管理
6.3.1.1查询功能
女装分析系统的可视化查询功能是指用户可以通过图形化界面进行数据查询和筛选,获取符合特定条件的女装评论数据,并以可视化方式展示结果。下面是一个关于可视化查询功能的简要描述:
界面设计: 可视化查询功能应该具有用户友好的交互式界面,包括输入框、下拉框、复选框等控件,可以方便用户进行数据查询和筛选。同时,界面还应该有一定的美观性和易用性,以提高用户的使用体验。
查询条件: 可视化查询功能应该提供多种查询条件,如时间范围、评论内容、商品类型、情感极性、评分等,使用户可以根据自己的需求进行筛选。查询条件还可以根据实际情况进行扩展和调整。
数据展示: 查询结果应以可视化方式呈现,如柱状图、折线图、饼图等,可以直观地展示数据的分布和趋势。同时,也可以提供表格或列表形式的展示方式,以方便用户查看更详细的数据信息。
交互式操作: 可视化查询功能还应该支持用户的交互式操作。例如,用户可以通过鼠标单击或拖动、缩放等方式对图表进行操作,以获得更精确的数据信息。同时,也可以提供导出数据、分享链接等功能,便于用户进行数据分析和共享。
6.3.1.2详细描述
该后台查询功能,用户在登录之后,通过向后台查询接口发送请求,如图6.4是后台查询界面。输入所需要查询的内容,若查询成功,则跳转到所查询评论管理信息界面,如图6-5所示。
图 6-4 查询页面截图
图 6-5 查询页面截图
6.3.2 用户管理
该功能展示了用户的列表如图6-6所示,可以进行用户的增删,名称等信息的修改,有助于我们管理所注册的用户的信息。
图6-7 用户管理
图6-8 添加用户
6.3.3 权限管理
该功能用于对所有注册的用户的管理,用户的增删、管理员的设置,使得管理系统主次分明,更加完善,如图6-7所示。
、
图6-9权限管理
6.4本章小结
本章主要分析了基于Flask的女装分析可视化分析系统的测试过程,包括系统架构各模块测试,用户注册测试,用户登录测试,数据管理的查询功能测试、用户管理和权限管理等。
第7章 总结与展望
7.1 总结
由于基于Python休闲女装评论数据分析平台是由本人独立开发,因此在系统设计和业务逻辑方面更多地借鉴了目前市场上较为流行的框架和技术点,包括大数据技术,很多是不熟悉没接触过的,在开发过程中不断学习新知识。另外由于本人的时间和精力的原因,在系统开发过程中有很多地方可能并不能够完全尽如人意,还有许多需要补充的功能与模块。
7.2 展望
由于时间有限,女装分析系统在满足基本功能的同时,也存在着一些不足。如功能和安全性不够完善,页面的布局与市场上的一些信息管理系统还是有很大的差距等。因此,在系统需求分析与系统设计初期,必须进行更多的研究,对气象局的具体经营状况进行更深入的探讨。这样,才能开发出一个真正能满足用户业务需求的女装分析系统。存在的不足和后续需要改进的地方如下几个方面:←
1)确保数据真实性和美化界面,在整个系统UI界面的样式和配色应该进行更详细的设计的美化,改善用户体验。
2)在登陆时采用更安全的加密方法,确保系统的安全。当我的毕业论文接近尾声时,我意识到我很快就会进入社会。这次经历让我体会到如何自己发现和解决问题,以及会去思考更优解。在未来,我会朝自己选择的方向不断努力。
参考文献
- 于瑶瑶. 女装分析系统的设计与实现[D]. 济南: 山东大学, 2019.
- 刘文博. 女装分析系统的设计与实现[D]. 吉林大学, 2016.
- 于隆. 中小女装分析系统的设计与实现[D]. 大连理工大学, 2015
- Liu N, Chen L J, University Q N. Management System Design of Stocking, Selling and Storing of Enterprises[J]. Journal of Hebei North University, 2016.146-152.
- Bose Indranil, Pal Raktim, Ye Alex. ERP and SCM systems integration:The case of a valve manufacturer in China[J]. Information & Management. 2008, 45(4):233~241.
- 陈京民. 管理信息系统[M]. 北京:清华大学出版社, 2006.136~137.
- 陈晓. 制造用户ERP深化应用研究[D]. 华北电力大学, 2014:6~8.
- 廖芹等. 工业用户库存管理信息系统的设计和研究[J]. 华南理工大学学报,2019(5): 254~260.
- 张瑞君, 孙玥璠, 石保俊. 中国用户 ERP 投资关键信息披露问题研究[J]. 会计研究, 2018, 02:55-62+96.
- 刘华敏,李玉. 女装分析系统的设计与实现[J]. 电脑知识与技术, 2018, (11) :34~37.
- 徐鑫, 何红军, 包玉玲. 供应链中库存管理的研究[J]. 自然科学,2005, 3(6): 46~52.
- 邓笑. 基于Spring Boot的校园轻博客系统的设计与实现[D].华中科技大学, 2018.
- 王松. Spring Boot+Vue全栈开发实战[M]. 北京:清华大学出版社, 2018.12.
- 冰河. MySQL技术大全: 开发优化与运维实战[M]. 北京:机械工业出版社, 2020.11.
- 苏阳. 用户在线进销存管理信息系统的设计与实现[D]. 北京工业大学, 2016.
- 王崇娴. 中小型女装分析信息系统的设计与实现[D]. 江西财经大学, 2017.12.
- James A O'Brien. Managing Information Technology in the E-Business Enterprise[M]. Mcgraw -Hill, 2009, 77-89.
时光飞逝,四年的本科生生涯即将结束。在这四年的时光里,有遇到难题时的手足无措;有获得专业进步时的开心。经历了许多的事情,自己也在不知不觉中成长了很多,心中充盈最多的仍是感激。
首先感谢我的导师,他严谨的治学态度深深地影响每位同学,是老师们用知识的火炬照亮我们前进的道路,塑造了我们对学术的敬畏和热爱,不仅传授了我们知识,也教会了我们做人;我要感谢我的同学,四年以来,我们一起走过了欢笑和泪水苦乐交织的日子。我们一起探讨学术、一起娱乐、一起追逐梦想,一起共度人生最美好的时光,是他们的陪伴,让我的大学生活充满了色彩与活力;我要感谢我的父母,他们总是默默的付出,在生活上给与我最大的帮助,在学习上也给我很多建议。在我迷茫的时候,给予我指引,在我挫败的时候,给予我鼓励,在我成功的时候,为我骄傲,你们的牺牲与付出我会永远铭记。
最后,由衷的感谢各位评审老师在百忙之中抽出时间来参与我的论文评审和答辨。