题目 | 基于Django技术的二手房信息管理系统设计与实现 | |||||
课题类型 | 理论性课题( ) 实践性课题( √ ) | |||||
课题来源 | 教师科研课题( ) 教师拟定课题( √ ) 学生自拟课题( ) 师生联合命题( ) | |||||
一、选题背景、目的及意义(不少于500字) 选题背景: 随着互联网和大数据技术的快速发展,房地产行业正经历数字化转型。二手房市场作为房地产市场的重要组成部分,积累了大量的数据。这些数据蕴含着丰富的信息和价值,对于购房者、卖房者、房地产中介以及政策制定者都具有重要意义。然而,目前二手房市场缺乏一套完整的数据分析可视化系统,无法充分利用这些数据为市场参与者提供决策支持。因此,本研究旨在基基于Django技术的二手房信息管理系统,提高市场透明度和决策效率,促进二手房市场的健康发展。 选题目的: 为了解决二手房交易过程中信息不对称的问题,提供一个便捷的平台供买卖双方发布和查询房源信息,从而提高信息的透明度和交易的效率。同时,该系统还可以为房产中介机构提供一个管理房源信息的平台,方便他们更好地开展业务。通过该系统,用户可以快速了解市场行情,找到心仪的房源,从而更好地实现房产交易。 选题意义: 随着互联网技术的发展,越来越多的人选择在网上进行房屋出租和购买。而二手房交易作为房地产市场的重要组成部分,其信息管理和分析显得尤为重要。通过建立一个基于Web的房屋出租管理系统,可以实现对房屋出租信息的高效、合理管理,提高信息的透明度和可靠性,为房屋出租和购买提供更加便捷的服务。此外,该系统还可以为政府部门和相关机构提供数据支持,帮助他们更好地了解和掌握房地产市场的动态,制定更加科学的政策和规划。 | ||||||
二、国内外研究现状和发展趋势(不少于800字) 国内研究现状: 目前,国内二手房信息管理系统主要通过爬虫采集链家等房产网站上的二手房房源数据,并对采集到的数据进行清洗和可视化分析,以探索隐藏在大量数据背后的规律。此外,还可以采用聚类算法对所有二手房数据进行聚类分析,并根据聚类分析的结果,将这些房源大致分类,以对所有数据的概括总结。这些分析结果可以帮助购房者更好地了解市场情况,做出更明智的购房决策。 在政策对于房屋价格的影响方面,张梦和施同兵在 2020 年研究了土地政策对于的房屋价格的影响,研究发现作为房屋成本组成部分的土地政策,会通过影响土地价格来对房屋价格产生较大影 响;韦金洪和刘佳在 2012 年探究了货币政策对于房屋价格的影响,建立 VAR模型证实利率与货币供应量对房价有较大影响,其中货币供应量与房地产价格呈正相关。而利率对房地产价格的影响在短期和长期中是不一样的,短期会表现出正相关,而长期则表示为负相关;陈将浩在 2014 年探究了消费者信心指数对于房屋价格的影响,通过研究发现,消费者信心指数对房价有正向影响,即房价随着消费者信息指数的增高而增高;汪雅倩和陈依萍在 2016 年探究了 GDP 对于房屋价格的影响,利用最小二乘回归,分析出地区 GDP 与房屋平均销售价格成正相关关系的结论;徐建炜等人[5]在 2012 年探究了人口结构对于房屋价格的影响,研究发现老年人口比例的增加对房价呈负向影响,少年人口比例的增加对房价呈正向影响。吴齐林在 2007 年探究了供需关系对于房屋价格的影响,结果显示房价的快速上涨是由于需求方的无序竞争与供给方的寡头垄断造成的;汪慧颖等人[7]在 2007 年同样探究了需求与供给方面对于房屋价格的影响,从供求关系角度得出武汉市二手住房价格的变化原因,并且预测武汉市房价的未来走势;谭刚在 2001 年探究了经济发展对于房屋价格的影响,发现市场经济的发展速度会促进房地产行业的发展,即两者是正相关的关系。其次考虑微观因素对于房屋价格的影响。刘冰等人[9]在 2017 年使用多元回归模型,基于南京八个地区的二手房数据来分析所选的八个微观变量对于房价的影响程度,研究发现对于二手房价格影响程度较高的两个变量是房屋所在区域以及住房有无电梯这两个变量。 国外研究现状: 在国外,二手房信息管理系统也是一个热门的领域。例如,在美国,Zillow等房产网站提供了大量的二手房房源数据,并通过数据分析和机器学习等技术,为购房者提供更加精准的房价预测和房源推荐等服务。此外,还有一些专门的数据分析公司,如Redfin等,致力于为购房者提供更加全面和深入的二手房数据分析服务。 在宏观因素对于房屋价格的影响方面。Apergis从货币政策的角度出发,研究发现货币供给量与其他宏观因素的共同作用会对房地产价格有重要影响;Elbourne同样从货币政策的角度出发,研究发现货币供给对于房价的影响很大;Abraham 和 Hendershott在 2004 年从就业率对房价影响的角度展开研究,研究表明就业率以及居民收入都与房价变动密切相关,并且利率与房价呈现负相关的变动趋势。Kau 和 Keenan在 1995 年的研究中发现住宅需求与利率之间是反向关系;在通货膨胀对于房屋价格的影响方面,Brueggeman 等人在 1984 年通过建立房地产资产定价模型,发现物价指数对房地产报酬率有正向影响,因此认为投资房产能够有效消除通货膨胀导致的货币贬值风险;Miller使用夏威夷的数据进行汇率对房价的影响,结果表明随着日元兑美元升值,夏威夷的住宅市场价格明显上涨。 | ||||||
三、主要研究内容、拟解决的问题及预期成果(不少于500字) 主要研究内容: 基于Django技术的二手房信息管理系统采用B/S模式的体系架构。本系统由前端展示模块和后台的管理模块组成,其中前端展示模块包括用户注册、用户登录、查看推荐二手房信息、用户中心、查看房源模块和收藏房源模块等,后台管理模块包括用户管理模块、用户收藏管理、房源信息管理模块和可视化分析等一系列功能模块 整个系统总体包含两个角色,用户和管理员。用户可以在系统中查看推荐二手房信息、用户中心、查看房源模块和收藏房源模块。管理员可以对用户管理、用户收藏、房源信息进行管理。 功能模块如下: 图 3.1用户功能模块图(部分功能) 图 3.2管理员功能模块图(部分功能) 拟解决问题: 在通过大量文献查询的基础上,通过对课题的仔细研究,拟解决以下问题:
预期成果:
| ||||||
研究思路: 本系统主要采用以下思路进行研究: 1、参照分析法。本二手房信息管理系统功能和需求与现有的大部分二手房信息管理系统类似,主要是对现有的功能进行优化改造,以及增加房产企业的需求。所有对于现有的二手房信息管理系统的分析和研究是十分必要的,可以通过其了解本系统所需的基础功能和技术,并且对于分析二手房等的研究也具有重大的帮助和意义。 2、文献研究法。通过查阅文献资料,了解如今二手房的发展和趋势。参照其他二手房开发所需要的技术和流程,熟悉二手房系统的实际活动流程,为后台逻辑设计做准备。同时需要通过文献查找如何对目前的二手房系统进行优化改造,并尝试去完善部分理念。 3、抽样调查法。针对现有二手房系统对于企业方面的功能处理进行调查和分析,了解目前最常使用的二手房系统的功能,用以本系统的需求分析的背景知识和系统的主要需求。 技术路线: 本系统开发模型为瀑布模型并且采用前后端分离的三层架构模式: Web展示层(浏览器):系统最外层,向用户展示各种界面,用户通过界面对系统进行操作,并通过业务逻辑层来实现用户各种操作信息的添加、修改和删除。 应用逻辑层:应用逻辑层处在数据层和Web层之间,与数据直接关联,同时又为Web层服务。其封装了对数据库的所有操作,包括数据的添加、修改、删除和查询。 数据层:系统的底层,提供数据操作的接口和存储本系统所有数据。 本系统采用Python开发语言,主要使用框架,以MYSQL作为后台数据库。 使用html,css,js编写前台页面。并在实践过程中考虑工程管理流程与经济决策方法,并进行应用。 可行性论证: 主要包括操作可行性、经济可行性、技术可行性以及社会可行性。主要分析论证如下: 操作可行性: 本二手房系统逻辑不复杂,与一般的二手房系统流程基本一致,开发难度不是特别高,需要开发者掌握Python语言和Django的基础框架、前端html和相关的一系列开源框架,以及Pycharm等开发工具的使用。硬件设备仅需一台个人电脑,软件设备要求也不高,所以有很高的可操作性。 社会可行性: 当前国内二手房信息平台正在迅速发展,有关二手房安全问题包括数据安全和网络完全等显性问题目前国内已经有很多良好措施去保障用户在二手房信息系统上使用的安全问题。 技术可行性: 目前二手房信息系统已经非常成熟,网络上有很多的文献资料可以参考和研究。并且本系统所选用的开发技术也已经成熟稳定,有强大的API文档和开发者社区支撑。所采用的开发框架也有较强的可维护性,便于系统的维护和后续的功能拓展。所以技术上可行 经济可行性: 本系统主要采用Python和html的相关技术,均为开源技术,并且Python的主要开发工具Pycharm也是免费,成本较低;而html的众多组件都是免费可用的,所以经济上可行。 通过以上四个方面,完成本系统的设计理论上是完全可行的,并且在本课题研究中将分析系统对社会、环境方面等因素的形象效果,并将围绕社会、健康、安全、法律、文化以及环境等因素来设计和实现系统的功能模块。 | ||||||
五、主要参考文献(文献不少于15篇) [1]陈娟,陈雯,石飞,王建英,胡英。 基于Python的信号与系统实验教学改革与实践[J]. 实验技术与管理,2021,(05):196-200. [2]杨军,张岳,刘燕峰。 基于Python语言的数据挖掘课程的建设与研究[J]. 科技风,2021,(14):80-82. [3]钟自成,邵俊杰,李旺年,张宁。 基于Python和ABAQUS的钻机摆动机构拓扑优化设计[J]. 煤矿机械,2021,42(06):125-127. [4]徐梓赫,廖锦。 Python提取GIS就业信息并进行可视化分析研究[J]. 网络安全技术与应用,2021,(05):45-47. [5]叶惠仙,游金水。 Python语言在大数据处理中的应用[J]. 网络安全技术与应用,2021,(05):51-54. [6]张玉荣,王强强,吴琼,祝方清。 基于Python-OpenCV图像处理技术的小麦不完善粒识别研究[J]. 河南工业大学学报(自然科学版),:1-13. [7]陈慧,郝锦亨,袁志涛,罗佳伟,陈胤熹,郑少鹏,黎佩瑜,吕咏锶,梁世濠,赖林浩,曹诗林。 利用python/RGB色彩数据分析平台快速测定还原糖浓度[J]. 现代食品科技,:1-6. [8]谢树仁,邓凯成,喻琨,陈政。 基于Python框架的农业信息共享平台研究--以湖南省衡阳市为例[J]. 经济师,2021,(05):37-39. [9]张军。 一种基于Python的售后配件批处理软件的设计[J]. 汽车实用技术,2021,46(08):68-69. [10]胡钊。 基于Python Flask的温度数据可视化[J]. 电子世界,2021,(08):117-119. [11]冯兴民。 哈夫曼编码方法的选择及其Python的实现[J]. 电子世界,2021,(08):188-189. [12]范洁。 基于Python的网络流量特征统计分析与可视化[J]. 信息技术与信息化,2021,(04):49-51. | ||||||
六、工作安排及进度
| ||||||
开题报告会议纪要 | ||||||
时 间 | 地点 | 主持人 | ||||
参 会 教 师 | 姓 名 | 职 务(职 称) | 姓 名 | 职 务(职 称) | ||
会 议 记 录 摘 要 | 记录人: 年 月 日 | |||||
指 导 教 师 意 见 | 签字: 年 月 日 |
基于Django技术的二手房信息管理系统设计与实现(需求文档)
最新推荐文章于 2024-11-12 16:37:05 发布