Malmquist指标在DEAP中的应用及Matlab实现

162 篇文章 52 订阅 ¥59.90 ¥99.00
本文介绍了Malmquist指标如何与DEAP方法结合,用于衡量技术效率和技术变化。DEAP是效率评估工具,而Malmquist指标则通过比较不同时期的技术效率揭示变化。在Matlab中,提供了计算单位绩效的示例代码,帮助评估不同单位的绩效差异和改进机会。
摘要由CSDN通过智能技术生成

Malmquist指标在DEAP中的应用及Matlab实现

Malmquist指标是一种用于衡量技术效率和技术变化的方法,常用于评估不同单位、企业或组织的相对绩效。DEAP(Data Envelopment Analysis Programming)是一种常用的效率评估方法,结合Malmquist指标可以提供更深入的洞察力。本文将介绍Malmquist指标在DEAP中的应用,并提供Matlab代码示例。

DEAP方法的基本思想是将多个输入和输出指标转化为线性规划问题,并通过计算单位的技术效率来评估其绩效。Malmquist指标是DEAP方法的一种扩展,它通过比较两个时间点的技术效率来揭示技术变化和进步。具体而言,Malmquist指标测量的是两个时间点之间单位绩效的相对变化,包括技术效率和技术进步两个方面。

下面是在Matlab中使用DEAP和Malmquist指标计算单位绩效的示例代码:

% 导入数据
data = xlsread('input_data.xlsx'
编写Malmquist指数模型的代码需要涉及到数据处理和线性规划等方面的知识。下面是一个简单的Python示例代码,用于计算Malmquist指数: ```python import numpy as np from scipy.optimize import linprog # 输入数据 input_data_1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) output_data_1 = np.array([[10, 11], [12, 13], [14, 15]]) input_data_2 = np.array([[2, 3, 4], [5, 6, 7], [8, 9, 10]]) output_data_2 = np.array([[11, 12], [13, 14], [15, 16]]) # 计算Malmquist指数 def calculate_malmquist(input_data_1, output_data_1, input_data_2, output_data_2): # 计算第一期的效率得分 efficiency_scores_1 = calculate_efficiency_scores(input_data_1, output_data_1) # 计算第二期的效率得分 efficiency_scores_2 = calculate_efficiency_scores(input_data_2, output_data_2) # 计算技术变动指数 technical_change_index = efficiency_scores_2 / efficiency_scores_1 # 计算技术效率变动指数 efficiency_change_index = calculate_efficiency_change_index(input_data_1, output_data_1, input_data_2, output_data_2) # 计算Malmquist指数 malmquist_index = technical_change_index * efficiency_change_index return malmquist_index # 计算效率得分 def calculate_efficiency_scores(input_data, output_data): num_units = input_data.shape[0] # 初始化线性规划问题 c = np.zeros(num_units) c[0] = -1 # 目标函数为最大化效率 A_eq = np.hstack((input_data.T, -output_data.T)) b_eq = np.ones(input_data.shape[1]) # 求解线性规划问题 res = linprog(c, A_eq=A_eq, b_eq=b_eq) # 返回效率得分 efficiency_scores = res.x[0:num_units] return efficiency_scores # 计算效率变动指数 def calculate_efficiency_change_index(input_data_1, output_data_1, input_data_2, output_data_2): efficiency_scores_1 = calculate_efficiency_scores(input_data_1, output_data_1) efficiency_scores_2 = calculate_efficiency_scores(input_data_2, output_data_2) efficiency_change_index = efficiency_scores_2 / efficiency_scores_1 return efficiency_change_index # 计算Malmquist指数 malmquist_index = calculate_malmquist(input_data_1, output_data_1, input_data_2, output_data_2) print("Malmquist指数:", malmquist_index) ``` 在这个示例,我们通过调用`calculate_malmquist`函数来计算Malmquist指数。该函数内部调用了`calculate_efficiency_scores`函数来计算效率得分,并调用了`calculate_efficiency_change_index`函数来计算效率变动指数。 请注意,这只是一个简单的示例代码,实际应用可能需要根据具体情况进行调整和优化。此外,为了计算Malmquist指数,您需要提供两个时间段的输入输出数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值