Malmquist index
近来,在学习一篇文献时,用的是malmquist指数。一直有听同学说起,这次自己终于拾起这个内容。本人所看的文献为:
这篇博文先简单介绍一下最基础的Malmquist指数是什么。而Bootstrap Malmquist我个人还在实现阶段,代码出现了bug,所以有缘再说。
优缺点(文献中提及)
优点
Malmquist指数有几个优势:
首先,它是根据输入和输出的定量数据计算的,不需要定价信息。
其次,没有必要假定一种方法可以最大限度地提高产出或减少投入。
最后,它能够提供生产率变化的细分,从而提供导致变化的不同来源。
其他优点还包括,当添加投入和产出时,它不使用固定加权,它不需要对其计算中涉及的变量使用标准化的计量单位。
缺点
它不能计算为一个孤立的单位,因为它的计算需要面板数据;此外,还涉及到距离函数值的计算。然而,这些缺点将避免使用面板数据库获得结果,距离函数将使用DEA计算。
Malmquist index模型
这篇文献中的DEA用的是基于产出导向(output-oriented)的模型(基于输入导向的也可以,看研究内容)。
Malmquist指数就是由四个部分组成,然后对运算结果开平方根:
这四个距离函数D的计算就是通过DEA来完成,并且这篇文献采用的DEA就是CRS下的基于产出导向的CCR模型:
通过上述两个步骤,其实malmquist指数已经计算完毕。一般对其分析,都会将malmquist指数拆分成两个部分,分别为 technological change (T)以及technical efficiency change (E)。
对于Malmqusit指数的含义,本人了解的不多,此处不进行阐述。
例子数据
这篇文献中并没有提供具体的数据。
个人从国家统计局中,找了31个省市2015年-2019年的数据,两个投入一个产出(不要纠结数据意义,只是为了实现模型)。
数据放在资源地方,要实现malmquist的人自取,下面展示部分:
地区 天然气2015 年末常住人口 地区生产总值指数 天然气2016 年末常住人口 地区生产总值指数 天然气2017 年末常住人口 地区生产总值指数 天然气2018 年末常住人口 地区生产总值指数 天然气2019 年末常住人口 地区生产总值指数
北京市 144.49 2171 106.9 162.24 2173 106.9 164.17 2171 106.8 191.6 2154 106.7 192.43 2154 106.1
天津市 30.66 1547 106.9 34.17 1562 106 42.29 1557 103.4 50.1 1560 103.4 57.62 1562 104.8
河北省 31.42 7425 106.8 36.64 7470 106.7 48.51 7520 106.6 51.12 7556 106.5 58.17 7592 106.7
至于结果分析,我自己是没有涉猎的,但是有兴趣的人可以参考这篇文章:
malmquist指数代码目前不提供!