使用MATLAB的免疫算法求解函数极值问题

174 篇文章 56 订阅 ¥59.90 ¥99.00
本文展示了如何利用MATLAB的免疫算法解决函数极值问题。通过定义目标函数并应用优化工具箱中的函数,实现了算法的执行,最终得出全局极小值。免疫算法作为一种生物启发式优化方法,适用于多种优化场景。
摘要由CSDN通过智能技术生成

在本篇文章中,我们将介绍如何使用MATLAB中的免疫算法来求解函数的极值问题。免疫算法是一种受生物免疫系统启发的优化算法,它模拟了生物免疫系统中的抗体和抗原之间的相互作用。通过模拟这种相互作用,免疫算法能够搜索问题的解空间,并找到最优解。

首先,我们需要定义要优化的目标函数。在这个示例中,我们将使用一个简单的二维函数作为示例。假设我们要求解的函数是一个二维的带有多个局部极小值的函数,可以表示为:

f(x, y) = x^2 + y^2 - 2*cos(2*pi*x) - 2*cos(2*pi*y) + 4

我们的目标是找到这个函数的全局极小值。

接下来,我们将使用MATLAB来实现免疫算法。我们将使用MATLAB的优化工具箱中的ga函数来实现免疫算法。下面是使用免疫算法求解函数极值问题的MATLAB代码:

% 定义目标函数
fun = @(x) x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值