径向基函数神经网络的实现与应用

159 篇文章 34 订阅 ¥59.90 ¥99.00
本文详细介绍了如何使用Matlab实现径向基函数神经网络,包括网络结构、中心选择、权值计算,以及在函数逼近问题上的应用实例。
摘要由CSDN通过智能技术生成

径向基函数神经网络的实现与应用

径向基函数神经网络(Radial Basis Function Neural Network,简称RBF神经网络)是一种基于径向基函数的前向神经网络模型。它在模式识别、函数逼近、数据压缩等领域具有广泛的应用。本文将介绍如何使用Matlab实现一个简单的径向基函数神经网络,并展示其在函数逼近问题上的应用。

一、径向基函数神经网络简介
径向基函数神经网络由输入层、隐藏层和输出层组成。其中,隐藏层的神经元采用径向基函数作为激活函数,常用的径向基函数有高斯函数、多项式函数等。RBF神经网络的训练过程包括两个阶段:中心选择和权值计算。中心选择阶段确定隐藏层神经元的中心,一般采用聚类算法(如k-means算法);权值计算阶段通过最小二乘法或梯度下降法计算权值。

二、Matlab实现径向基函数神经网络
以下是使用Matlab实现径向基函数神经网络的示例代码:

% 步骤1:生成训练数据
x = -5:0.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值