径向基函数神经网络的实现与应用
径向基函数神经网络(Radial Basis Function Neural Network,简称RBF神经网络)是一种基于径向基函数的前向神经网络模型。它在模式识别、函数逼近、数据压缩等领域具有广泛的应用。本文将介绍如何使用Matlab实现一个简单的径向基函数神经网络,并展示其在函数逼近问题上的应用。
一、径向基函数神经网络简介
径向基函数神经网络由输入层、隐藏层和输出层组成。其中,隐藏层的神经元采用径向基函数作为激活函数,常用的径向基函数有高斯函数、多项式函数等。RBF神经网络的训练过程包括两个阶段:中心选择和权值计算。中心选择阶段确定隐藏层神经元的中心,一般采用聚类算法(如k-means算法);权值计算阶段通过最小二乘法或梯度下降法计算权值。
二、Matlab实现径向基函数神经网络
以下是使用Matlab实现径向基函数神经网络的示例代码:
% 步骤1:生成训练数据
x = -5:0.