
On the expressiveness and spectral bias of KANs 论文解读
Kolmogorov-Arnold网络(KAN) [46] 最近被提出为许多深度学习模型的主干结构,多层感知机(MLP)的潜在替代方案。KAN在许多科学任务中取得了成功,其经验效率和准确性在函数回归、PDE求解和许多其他科学问题中得到了验证。在这篇文章中,我们重新审视了KAN和MLP的比较,但从理论的角度出发。我们一方面比较了KAN和MLP的表示和近似能力。我们证明了MLP可以使用与其大小相似的KAN来表示。这表明KAN的近似和表示能力至少与MLP相当。




















