在现代机器学习领域,模型的训练只是整个过程的一小部分,而将训练好的模型部署到实际应用中才是最终目标。TensorFlow 提供了强大的部署框架,使得将训练好的模型转化为实际可用的应用变得更加简单和高效。本文将带你深入了解 TensorFlow 部署框架的使用方法,并提供相应的源代码示例。
- 导入必要的库和模块
在开始之前,我们需要导入 TensorFlow 和其他必要的库和模块。下面是一个示例:
import tensorflow as tf
from tensorflow import keras
- 加载已训练好的模型
首先,我们需要加载已经训练好的模型。假设我们有一个经过训练的图像分类模型,可以使用以下代码加载模型:
model = keras.models