R语言中的配对卡方检验

25 篇文章 13 订阅 ¥59.90 ¥99.00
本文介绍了如何在R语言中进行配对卡方检验,以判断同一组观察对象在不同条件下的分类结果是否独立。通过创建数据、使用检验函数及进行前提条件检验,分析药物治疗效果对患者反应的影响。
摘要由CSDN通过智能技术生成

R语言中的配对卡方检验

在统计学和数据分析中,卡方检验是一种常用的假设检验方法,用于确定两个分类变量之间是否存在关联。当我们想要比较两个分类变量之间的差异时,可以使用卡方检验来判断它们是否独立。而当我们想要比较同一组观察对象在两个不同时间点或条件下的分类结果时,我们可以使用配对卡方检验。本文将介绍如何在R语言中进行配对卡方检验,并提供相应的源代码。

首先,我们需要准备数据。假设我们有一个研究目的是探究某项新药物对患者治疗效果的影响。我们随机选取了100名患者,并将其分为两组:试验组和对照组。在治疗前和治疗后,我们记录了每位患者的治疗反应,分为好、一般和差三个等级。我们将这些数据保存为一个2x3的列联表。

下面是示例数据的展示:

# 创建列联表
table <- matrix(c(20, 30, 10, 15, 40, 25), nrow = 2, dimnames = list(c("治疗前", "治疗后"), c("好", "一般", "差")))

# 显示列联表
table

在上述代码中,我们使用了matrix函数创建了一个2x3的矩阵,并使用dimnames参数为行和列指定了名称。然后,我们填充了矩阵中的元素,即每个治疗反应等级的观测数量。

接下来,我们可以使

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值