R语言中的配对卡方检验
在统计学和数据分析中,卡方检验是一种常用的假设检验方法,用于确定两个分类变量之间是否存在关联。当我们想要比较两个分类变量之间的差异时,可以使用卡方检验来判断它们是否独立。而当我们想要比较同一组观察对象在两个不同时间点或条件下的分类结果时,我们可以使用配对卡方检验。本文将介绍如何在R语言中进行配对卡方检验,并提供相应的源代码。
首先,我们需要准备数据。假设我们有一个研究目的是探究某项新药物对患者治疗效果的影响。我们随机选取了100名患者,并将其分为两组:试验组和对照组。在治疗前和治疗后,我们记录了每位患者的治疗反应,分为好、一般和差三个等级。我们将这些数据保存为一个2x3的列联表。
下面是示例数据的展示:
# 创建列联表
table <- matrix(c(20, 30, 10, 15, 40, 25), nrow = 2, dimnames = list(c("治疗前", "治疗后"), c("好", "一般", "差")))
# 显示列联表
table
在上述代码中,我们使用了matrix
函数创建了一个2x3的矩阵,并使用dimnames
参数为行和列指定了名称。然后,我们填充了矩阵中的元素,即每个治疗反应等级的观测数量。
接下来,我们可以使