- 博客(107)
- 资源 (1)
- 收藏
- 关注
原创 个体化神经调控 Neurolnavigation介绍
首先将SimNIBS生成的头颅模型转换成BrainSight要求的格式,然后导入到BrainSight里面,再把scalp点的坐标输入进去,就可以操作TMS线圈实时定位头皮scalp点,对齐以后就可以手持TMS线圈进行刺激,当然每次开始进行刺激时,都要点一下记录当前实际刺激点,因为每个人都会手抖,可以根据实际刺激点和输入的预期刺激点,后期在分析过程中,计算两者差异和疗效差异有没有相关性。因此,首先以杏仁核作为种子点,计算PFC的FC map,找到最负的点,求其点坐标,即负向峰值坐标。今天主要说一下TMS。
2024-10-27 04:44:58 387
原创 Results comparison between GRETNA and brainGraph and tutorial for brainGraph
The R package ‘brainGraph’ is much convenient to compute graph indicators than GRETNA, but no one compare the results between them.Here is the comparison test between them, and the results show that their computations are equal.(1) Density in brainGraph =
2024-05-23 02:58:50 372
原创 招聘海外博后
主要方向为心理学,偏向认知心理学和精神障碍疾病脑机制雄安英,有相关科研经历都可以申请,欢迎不同背景的博士带来新视野。实验室地点是美国爱荷华州爱荷华大学附属医学院,工资高物价低,很适合科研出成果。帮朋友的导师招聘海外博后~~详情看图片,招聘长期有效。
2024-04-17 11:13:44 776
原创 spm12和nilearnGLM结果比较
对于任务态数据,一般常规用SPM12软件去拟合计算。而nilearn中也有GLM和first level model。于是我对比了下两者计算的结果。
2024-03-05 13:37:22 881
原创 fsck: error 2 (No such file or directory) while executing fsck.ext2 for /dev/xxx
仍然报错“fsck: error 2 (No such file or directory) while executing fsck.ext2 for /dev/nvm0n1p2 ”,后来看到另一个答案提示,发现是O和0写错了,于是重新输入。最近长期使用ubuntu,下班前用google下载了一些文件,也跑了一些程序,然后第二天早上上班就发现电脑息屏了。去网上搜了一些办法,都不行,差点想重装系统了,但是里面有很多软件和资料,还是需要想办法。尝试了一个答案,输入。
2024-01-08 23:38:18 1827
原创 病灶的相关处理
具体包括画出病灶,生成二值mask,然后使用命令 (fslswapdim LV_R -x y z LV_L,注意-x代表在x上翻转)翻转二值mask,就得到了对侧legion mask,然后把对侧图象剪切下来再翻转回来,这就是同源信号。然后将根据修复的T1到MNI152的转换矩阵,将legion mask 转换到MNI空间,要注意,这里转化的时候选择邻近值插入,而不是差值/线性插入。第二是把仅仅把病灶翻转,即把对侧正常组织映射到病灶处,然后扣掉对侧正常组织,也就是说仅病灶翻转,全部脑组织不翻转。
2023-11-21 08:26:44 408
原创 high perfermance computer usage
我这大学的每一位学生,可以轻松使用hpc批量跑数据,也可以新建自己的server跑一些local data,后者每个学生账号最大是32核512G的运行内存,体验非常好,只不过只能使用jupyternote book或者R登录,也可以跑bash,总之非常nice。一般来说,fmriprep只有几个步骤能跑满cpu,比如ants,还有一些步骤是跑不满的,所以假设同样8个被试,使用8个核心,一个一个跑,跟使用1个核心,8个一起跑,后者的时间应该是要短很多。其他都是一样的使用。第二个就是hpc节点的使用。
2023-11-13 23:43:24 697
原创 python 数据保存格式的选择
今天发现一个问题,就是有一个数据,很长,几百个被试的fmri数据,有10M+行,使用pandas.to_csv占用的时间特别长,写了20分钟还没写完。于是上网寻找更快的数据保存方式。
2023-10-26 01:03:52 404
原创 置换检验临界值
那么t检验对应的P值是0.02378,而同样统计值为2.3986,置换检验的P值为0.0258,其实查的不多。所以在置换检验中,可以近似使用T检验对应的P=0.05的统计值来作为临界值去筛选结果。例如b为1和2的分类变量,那么Z正值代表1大于2。我们知道t检验的t值换算成P值,是需要自由度的。例如在这个数据中,a是有8个数字,自由度是7。其中这个Z和t检验的t一样,是有大小分别的。置换检验和t检验一样,会有统计值和P值。假设统计值为2.3986,置换检验的统计值记为Z值。
2023-07-02 13:30:39 382 2
原创 Python和R的并行处理
python进行并行处理的分为多线程和多进程,多线程使用thread,多进程使用multiprocessing,还有线程池future。有2个cpu瞬间达到100%,到AntsN4BiasFiledCorrectionFs函数,第3个cpu落后了一些时间,但是后面也达到了100%。但是当我连接远程hpc,跑单核可以到100%,跑多线程时,hpc每个线程最大只能到10%的cpu负载,可能是hpc进行了某种限制。只有1个cpu达到100%,到AntsN4BiasFiledCorrectionFs函数。
2023-06-26 16:10:29 242
原创 R中的并行处理
加载foreach包后,有2种用法,一种是 foreach ( ) %do% {},另一种是 foreach ( ) %dopar% {}。首先可以看出,foreach的函数格式跟for是一样的。其次,do代表单线程,而dopar才是多线程并行。加载doMC,然后registerDoMC(),输入要使用的核,后面的命令会自动调用这么多核去执行任务。其次还有一个整合性的包,就是doMC,这个只能在linux下使用。R中的并行处理,主要使用foreach包。它的结果输出是一个列表。
2023-05-24 10:21:22 210
原创 igraph的layout布局
一共有上述9种布局。第一种(dh):可以显示出社区与社区间的关系,缺点是社区多了有点分不清。第二种(drl):不推荐使用第三种(fr):我比较喜欢的一个布局,可以看清有多少社区。推荐第四种(gem):不推荐使用第五种(graphopt):我比较喜欢的一个布局,大的社区放在中间。推荐第六种(kk):也还不错,可以作为补充选择。第七种(lgl):不推荐使用,太凌乱第八种(mds):是个不错的布局,值得推荐,是根据距离缩放来的,可以看得清社区间的联系。
2023-05-07 18:00:27 1902 3
原创 任务态相关的一些知识总结
静息态的数据处理现在都比较简单了,因为有了fmriprep和qsiprep流程工具,没有特别的难度。而关于任务态,则有一些独特的处理方式,因为最近要做任务态的数据分析,所以学习一下。先学习下R的4个重输出函数:cat , sink, wirteLines, write.table1.cat函数即能输出到屏幕,也能输出到文件.使用方式:cat(… , file = “”, sep = " ", fill = FALSE, labels = NULL,append = FALSE)
2023-05-06 13:36:17 711
原创 TBSS和dpabifiber
如果上一步是-T或者-n,那么这一步可以选择-S,即将所有原始FA图像根据上一步的配准矩阵,变换到目标空间(-T的目标空间是FMRIB58_FA)。生成所有被试的标准空间FA图像,然后把所有标准FA图像合并成all_FA的4D图像,创建stats子目录,并创建所有标准FA图像的平均值,mean_FA.nii.gz,以及均值骨架,mean_FA_skeleton.nii.gz。tbss_4_prestats,对上一步的平均FA骨架进行阈值处理,低于0.2阈值的被归零,留下的体素作为最后可以统计的范围。
2023-05-05 00:04:13 1512 13
原创 freesurfer的小错误
可以看出来,freesurfer确实是标记错了这个地方,也有可能在当初生成地图的时候,这个地方被错误归类了,其实应该人工修复一下。今天突然发现了一个freesurfer的地图aparc.a2009s的一个小错误(可能也不是错误?在我画红线的地方,有一个理应是Medial_wall的地方,出现了颜色,很奇怪。于是我就寻找那个点的坐标。那个点的坐标是102162和102163。两张图对比看,可以看出那个位置确实是有颜色的,但是按理说不应该有颜色。
2023-04-30 11:18:53 275 1
原创 fmriprep2
皮层下分割,mgz2niigz:‘%s parallel -j %g mri_convert %s/freesurfer/{1}/mri/rh.hippoAmygLabels.HBT.FSvoxelSpace.mgz %s/Results/AnatVolu/T1wSpace/{1}/{1}_Subregions_rh.hippoAmygLabels.HBT.FSvoxelSpace.nii.gz ::: %s’, …这个初始估计经过改进,然后保存到名为lh.white和rh.white的文件中。
2023-04-24 12:42:01 1851 9
原创 brainGraph基线测试
brainGraph做图论分析非常方便,远胜过gretna和BCT等软件。但是作者只对braingraph和BCT进行了基线测试,两者结果对比如下:可以说大部分是没有区别的。然而,作者没有对gretna进行测试,毕竟国内人写文章用gretna会稍微多一些。前两天我使用braingraph和gretna的结果对比了一下,发生了一些误会。
2023-04-06 11:51:57 545
原创 R语言中的cor和cov和pcor
由此可以看出,cor算出来的是相关性系数,在【-1, 1】之间变化,而cov是具体的统计量,所以跟原始数据的大小密切相关,所以SF-36&SF-36是371,而PRI&PRI只有22。还有一种半偏相关(semi-partial correlation),就是在计算X1和X2的相关性时,在仅排除X2与其他变量的影响后,去与X1做相关。简单理解,就是cov和cor,都是同一个统计,前者类似于统计量,后者类似于p值(只是简单举例)。cor和cov都是计算的相关性,当我们要计算偏相关时候,我们就需要ppcor包。
2023-03-16 13:39:36 3146
原创 structural covariance network
即:假设某个节点变化,它其实是多维度同步变化的,例如连接它的白质纤维束减少,它的皮层厚度就会降低(突触减少,神经元萎缩),并且它的功能bold信号也会有变化(当然不一定是降低,functional network没办法评估功能活动度降低)。Aaron Alexander-Bloch在他的文献中指出了,建议纳入age和gender去做结构协方差网络,因为皮层厚度与性别和年龄的关系最大(其中年龄为主要因素),因此这样形成的结构协方差网络,就在多个数据集或者多个被试之间具有了可比性。这个我觉得是比较有道理的。
2023-03-14 10:10:22 2386 3
原创 脑网络拓扑属性(二)
global efficiency & nodal efficiency:global efficiency 也是评价网络整合能力的,但是要更真实有效,它评价的是网络内所有子网络系统整体的信息传递效率。degree centrality 只评价连接,不评价质量,例如节点J 具有很高的degree centrality,是因为它的邻接节点具有很多degree而不是它本身。即,有多个功能区域而用很短的路径连接这些功能区域,因此小世界网络是整合的又是分离的。直接相连的两点,连向第3个点后,再连接其他点的概率。
2023-03-13 23:34:35 1077 2
原创 对于回归方程和线性回归方程的个人理解
当你有一组数据,你想知道一些因变量(x)和自变量(y)的关系时,就需要建模,这个建模即为建立回归方程。回归方程最常见最简单的就是一元回归,y=βx+b,其中β是系数,b是常数项。β也等于相关性系数。回归的拟合,也就是寻找一个最优β,使得误差平方和最小。一元总是最简单的,而实际应用则更为复杂。一般在医学里,我们不知道Y与哪些X有关系,我们都会纳入多个变量来进行临床建模和统计分析,也就是多元(线性)回归分析,这需要对回归方程理解更为深刻。
2022-11-07 17:05:50 2633
原创 随机森林可视化
今天看到别人的文章,说到了随机森林可视化,于是尝试了下:windows版本安装:1.在下面去下载window的exe安装包,安装graphviz。在路径选项,点击add path to computer,然后后面全部点确定就行。安装好以后,打开powershell,输入dot -version,就可以看到安装成功了。2.安装pygraphviz和pybaobabdt主要是使用Pybaobabdt来绘制决策树。
2022-11-06 22:09:11 23928 12
原创 fsbrain的学习笔记
之前分析皮层数据,基于freesurferformats构建了一套自己的脚本,后来偶然间发现了fsbrain,把这些都封装好了,并且还包括可视化。因此,就抽空来学习学习。
2022-11-01 20:47:11 1363
原创 neuromaps的学习笔记
neuromaps是一款2022年8月刚发布的工具,文章发表在nature method杂志上。近期同事推荐给了我,于是我尝试用了下。首先的话,neuromaps是一款主要用于脑区之间进行比较的工具,使用的是基于空模型的非参数方法-置换检验。
2022-10-31 19:23:31 1003
原创 A variance components model for statistical inference on functional connectivity networks
假设我们有一个p长度的时间序列,横跨N个被试。在不丧失一般性的情况下(without loss of generality),假设所有被试的边缘的时间序列都被减少了(the marginal time series across all subjects have been detrended)。为了估计FC强度,我们计算了所有被试每个ROI边缘时间序列的样本相关性,这样的话,每个被试就有q=p(p−1)/2q=p(p-1)/2q=p(p−1)/2。
2022-10-26 21:14:53 555
原创 Diffusion-weighted in MRI 学习笔记
功能像的学习已经差不多了,对功能连接、图论、机器学习方面的知识感觉已经掌握的差不多了,这段时间准备把DTI像给捡起来学习学习。图片引用自FSL官网学习DTI,不能逾越的软件当推FSL,我的学习笔记及部分博文图片也来自于FSL官网教程,仅供学习谈论。概述分析DTI像,主要就是集中于构建白质纤维束,要理解白质纤维束的构建过程,追源溯流,最开始的理论起源于分子的布朗运动。大家都知道,分子处于不断的随机运动中,这种运动被称为布朗运动,也讲作弥散(diffussion)。Diffusion = t
2022-05-18 12:30:02 3748 9
原创 R语言t检验中手动计算t值和p值
R语言中,根据t值求P值是 pt( ),根据P值求t值是 qt( )。但是计算有不准。最准确的方法是:t.value = (mean(data) - 10) / (sd(data) / sqrt(length(data))) p.value = 2*pt(-abs(t.value), df=length(data)-1)
2022-05-10 18:50:43 9901
原创 机器学习读书笔记(二)
介绍机器学习所有算法前,首先介绍两个最基本的算法,即 Perceptron 感知机 和adaptive linear neurons 自适应线性神经元。了解这两个基本算法有助于帮助理解后续的高级算法。机器学习发源于对神经元的模仿,即神经元的反射过程:信号输入–>信号处理–>信号输出。而一个巨大的飞跃,就是Frank Rosenblatt在1957年提出的在上述过程中加入自动学习过程,即 [ 信号输入–>信号处理–>信号输入权重更新 ] —> 信号输出。自动权重更新过程的
2022-05-06 18:55:00 756
原创 机器学习读书笔记(一)
机器学习分类机器学习算法主要分为三种,监督学习(supervised learning)、无监督学习(unsupervised learning)和强化学习(reinforcement learning)。监督学习有标签,用于预测结果或未来。无监督学习无标签,用于寻找数据潜在结构。强化学习有决策过程和奖励系统,用于学习一系列动作。监督学习监督学习是在训练数据和数据标签中进行机器学习,生成模型,然后将该模型用于新的数据去预测其标签。监督学习包括分类预测 classification 和回归预测
2022-05-06 13:16:19 674
原创 机器学习介绍——个人经验
以下为我的个人经验,主要用于分享和讨论,未关注内容的严谨性,仅供讨论和互相学习。什么是机器学习我的理解:机器学习是用于预测和分类的模型。这个模型是一个总称,其中包括监督学习的K近邻、线性回归、逻辑回归、SVN等,无监督学习的K平均、分层聚类、最大期望等。相较于传统的多因素分析而言,机器学习的这些算法对变量分布和特性(线性、独立不相关等)基本无要求,不需要前提假设,而传统多因素分析中则建立在强假设下,要求变量符合正态分布、线性独立等。因此,机器学习的算法要比传统多因素分析算法适应性更广,应用性更广,所
2022-04-20 20:23:05 1770 1
原创 2021总结
今天是上班第一天,早早的来到单位,把办公桌收拾干净,准备迎接新的一年。年前给单位写了年度总结,也看了很多关注单位的年度总结,有进步明显的,也有进步不明显的,也许大家付出的勤奋和努力不无差别,但结果的差强人意,虽有诸多混淆因素的作用,也终归和自己有一定干系,而时序则是人人相同的。我们可以常规在image data上 remove time points,但难以清除人生中的任一point。今天想来写年终总结,不是为了夸赞什么(事实上自己的现实生活过的很惨烈),也不是自卑什么,只是一个描述性的事件记录,给一个
2022-02-07 09:16:43 714 3
原创 记录一次excel汇总和脚本打包的经历
昨天看到同事在手动整理excel报表,记录医师的挂号量,一天一天导出感觉很辛苦。我想着写个程序帮助他,正好也自己对于整理excel相关的库比较感兴趣,游览了一些网址和博客后,决定使用xlrd和xlwt来实现整个过程。其实整个流程很简单,就是从医院系统里下载固定模式的表格,然后把他整理到目标表格里,体现出每个医生每天的挂号率。花了2小时写出来的代码,第一次使用excel相关库,分享给大家:#!/bin/python3# Created by Clancyprint("程序正在运行中,请稍后....
2022-01-12 16:45:37 492
gretna软件讲解中文机翻版.pdf
2019-12-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人