回归分析是一种用于探究变量之间关系的统计方法。它可以帮助我们了解自变量与因变量之间的关联,并用于预测和解释数据。在R语言中,我们可以使用多种函数和包来执行回归分析。本文将介绍如何在R中进行回归分析,并提供相应的源代码。
- 简单线性回归分析
简单线性回归适用于只有一个自变量和一个因变量的情况。我们可以使用lm()函数来拟合简单线性回归模型。以下是一个简单线性回归的示例:
# 创建数据
x <- c(1, 2, 3, 4, 5) # 自变量
y <- c(2, 4, 6, 8, 10) # 因变量
# 拟合线性回归模型
model <- lm(y ~ x)
# 查看回归结果
summary(model)
在上述代码中,我们创建了自变量x和因变量y的数据。然后,我们使用lm()函数拟合线性回归模型,并将结果存储在model对象中。最后,我们使用summary()函数查看回归结果的摘要统计信息。
- 多元线性回归分析
多元线性回归适用于具有多个自变量和一个因变量的情况。我们可以使用lm()函数的多个自变量形式来执行多元线性回归。以下是一个多元线性回归的示例:
# 创建数据
x1 <- c(1, 2, 3, 4, 5) # 自变量1
x2 <- c(2, 4, 6, 8, 10) # 自变量2
y