- 博客(135)
- 收藏
- 关注
原创 空间转录组做到啥程度能毕业|硕士篇
研究还预测了 Mono/MΦ 间的细胞相关性(图 3-1e),APOE+ Mono 与 LYZ+ Mono 相关性低,与 SPP1+ Mono 相关性高,后续拟时序分析也佐证了这一点,显示其分化的特征。作者这部分的内容中的大篇幅是基于对单细胞测序结果进行分析的,首先通过细胞分群定位到狼疮患者肾脏中 CD45+免疫细胞浸润明显增加,接下来对免疫细胞进行了进一步的分群注释和富集分析,主要包括髓系细胞、T细胞和B细胞。此外,LN中的淋巴管生成可能促进了Mono/MΦ在LN肾脏中的转运。
2025-02-08 09:38:39
412
原创 也就是说,DNA能当硬盘使?
在将二进制信息编码成DNA序列之前对其进行压缩,从而增加了信息容量和存储密度(Fig.3b)和使用复合DNA字母编码信息以减少合成周期,类似于简并碱基,复合DNA字母也是由序列中特定位置的混合NTs表示,并且有一个预定的比例(Fig.3c)。DNA储存的快速发展始于1999年,Church等人在2012年发表的工作引领了我们对DNA数字技术的重新思考,他们的工作实现了将长达650kb的文件写入115-nt寡核苷酸并成功测序,从那时起,来限制DNA的存储容量,而且合成的DNA可能会丢失信息或产生错误信息。
2025-02-06 10:15:02
531
原创 一文了解染色质可及性和表观基因组调控
染色质的可及性直接影响了调控因子对基因的结合和转录的进行,从而影响了基因的表达水平。核小体的占据和定位是染色质可及性的主要决定因素,由序列特异性的TF和染色质重构因子不同程度地调节,这种调节是通过亚组蛋白级别的转录因子对核小体DNA的竞争或通过激活染色质重构因子来实现的,这些染色质重构因子动态地驱逐核小体。主要的原理就是利用Tn5转座酶复合体,将带有标记的标签,与DNA进行孵育,裸露的DNA片段,将在转座酶的作用下,被置换出来,然后通过特异的标签引物进行PCR扩增,进行后续的测序工作。
2025-01-24 12:30:00
851
原创 一文掌握fastqc使用及结果解读
每个tile测序情况,横轴表示碱基位置,纵轴表示tile的index编号,这个图主要是为了防止在测序过程中某些tile受到不可控因素的影响而出现测序质量偏低,蓝色表示测序质量很高,暖色表示测序质量不高。如果出现质量问题可能是短暂的,如有气泡产生,也可能是长期的,如在某一小孔中存在残骸,问题不大。reads中对应位置上的平均碱基比例,由于样本、扩增、建库、测序的偏好性,四种碱基的含量未必严格遵循25%,但不应随读长的增加而剧烈改变,因此好的结果曲线相对平滑,而坏的测序结果显示各曲线存在抖动的情况。
2025-01-23 09:35:19
993
原创 如此科研?
,则可能将不同类型的细胞混合在一起进行差异分析,从而导致一些差异基因未被检测到或错误地被归因于其他细胞类型。4、实验技术噪音:包括来自于实验操作、批次效应、测序仪器、PCR扩增等步骤的技术噪音,这些噪音可能干扰了差异分析的结果,使得差异基因未被准确地检测到。我现在见过太多所谓的科研项目,立项的时候就把技术路线、预计结果在标书里写好。再考虑到信噪比的提升,单细胞测序技术对于基因表达的检测灵敏度十分有限,尤其是低丰度的基因。如果差异基因所在的细胞类型数量较小,那么扩大样本量来增加结果的可信度是十分有必要的。
2025-01-22 10:44:27
251
原创 R语言基础| 回归分析
这有助于用户识别特定的观测值或异常值,并进一步分析其对回归模型的影响。在上述代码中,cutoff是通过公式计算得到的阈值,它的计算方式是 4 / (nrow(states) - length(coefficients(fit)) - 1)。par(mfrow=c(2, 2))函数被调用后,后续的4个plot()函数调用将会自动按照2行2列的布局排列在绘图设备中,每个图形占据一个绘图区域。例如前面用的身高体重的例子中,A的体重通常不会影响B的体重,但如果在家族中做这样的统计则可能不那么独立了。
2025-01-21 10:06:44
998
原创 如何在没有root权限的情况下使用R语言
接下来,我们就来在Linux中配置能够使用R语言的Jupyterlab吧。这就是Jupyterlab的界面了,此时我们可以新建并运行Python文件,但还没有R语言的,所以下一步我们需要将R语言和Jupyterlab关联起来。运行完成退出即可,再次运行jupyter-lab,打开链接,此时我们可以看到Jupyter中出现了R!首先,我们需要用conda创建一个含有R语言的虚拟环境,这样也方便管理不同的R版本。再激活jupyter-lab之后,如果要退出的话很简单,只需要在终端中Ctrl+C并确认即可。
2025-01-17 14:14:14
574
原创 鼻咽癌的Bulk RNA-Seq与scRNA-Seq联合分析
因此,作者在最后推测,瘤内浸润的B细胞可产生免疫球蛋白G (IgG)抗体,增强树突状细胞呈递的肿瘤抗原的内化,进而激活肿瘤反应性T细胞启动机体对肿瘤的抵抗。),发现其中一些特定类群的免疫细胞浸润程度差别很大,这里依然是通过生存分析来揭示其在鼻咽癌中的作用,CD79B作为B cell的一个marker,其表达波动对于生存期影响很高。作者关注的PKP1,同样与上述的免疫细胞浸润评分呈现出显著的相关性,可以看出这个置信区间非常的小,这个基因主要与。的浸润评分高低分组,依然可以展示出很高的生存分析差异。
2025-01-16 11:00:38
730
原创 狗粮还是剩菜?
去年发表于“scientific reports”上的一篇名为“The effect of puppyhood and adolescent diet on the incidence of chronic enteropathy in dogs later in life”的文章对“伴侣犬的早期生活饮食方式和食物与主人报告的晚年慢性肠病发病率的关联”进行了探索,用科学的实验方法回答了上述争论。对狗粮来说,怎么知道我们买的“狗粮”是我们认为的狗粮,毕竟我的”淀粉肠“也不是我认为的淀粉肠😭。
2025-01-15 14:37:06
505
原创 单细胞/空间多组学培训班观后感
2.关于样本的制备方面讲解的很通俗易懂,很全,对于后期需要拿样品找他们公司进行单细胞或者空间转录组测序的实验人员来说应该还是比较全面的。5.之前一直以为代码都是自己一点一点写的,从这两天学习让我知道原来很多时候大家都是直接去找代码,也教了如何找代码的方法。2.给了生信代码,虽然没有逐条进行解读,但是可以课后进行逐一摸索,要比自己大海捞针的效率快一些。,路径的改变,数据格式的改变等等都会error,且初学者不会处理这种error。,前面还在教R语言基础,什么是向量,矩阵,列表,后面直接就给代码进行分析了。
2025-01-13 12:40:53
277
原创 单细胞测序做到什么程度能毕业|硕士篇
详细的看了一下,文章伊始用了七页的篇幅对脑胶质瘤及其在单细胞领域中的研究现状做了简单的总结,恰到好处的让读者了解了此论文的研究背景。另外,作者对于单细胞矩阵的描述也存在谬误。我们先来看一下目录,1-19页,一半的篇幅都在讲算法背景,并且是已有的算法,其中还将每个算法的公式、条件罗列了出来,即使考虑到作者本人是数学系的,我个人也认为这种行为完全没有必要,前三章完全是综述类的内容。如果说这是一个硕士毕业必备的工作量,确实就有点卷了,好在这篇毕业论文的作者在这篇SCI中的排名比较靠后,可能是个多人合作的结果。
2025-01-12 20:55:20
1019
原创 复现24年前的《Nature》—GEO中的第一个数据
突发奇想,现在生信数据的存储主要阵地——GEO数据库所收录的第一篇SCI论文做了怎样的工作?于是我们在GEO数据库中进行了检索(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE000001)并找到了这篇文章。
2025-01-11 11:00:00
587
原创 GPTCelltype:玩GPT4玩出Nature
学过我们此前课程(细胞类型注释,从入门到入土)的同学都知道,人工注释费时费力,需要分析人员对于组织中的细胞特征拥有专业级别的了解;此外,作者还使用了包含93%真实细胞与7%混合细胞的模拟数据集进行了测试,结果显示GPTCelltype对于已知和未知细胞类型的注释准确率高达99%(Figure.2g)。细胞注释是single-cell RNA suquencing(scRNA-seq)的基本步骤,这一步基本不能直接产生对文章论题有用的信息与图表,但是却十分耗时、耗力、耗专业知识。
2025-01-09 09:59:31
834
原创 一文学会零代码单细胞分析
5、填写信息,选择待分析的数据,可以选择【开始分析】手动进行过滤整合和聚类,也可以选择【基础分析】、【基础分析+细胞注释】、【基础分析+细胞注释+差异富集】或【基础分析+细胞注释+差异富集+画图工具】快速进行自动分析。点击【编辑】后弹出编辑分组弹窗,分组详情中则包括此分辨率下所有cluster的标注结果,可进行相应的编辑处理,修改完成后点击【保存】同步结果。点击【top】按钮打开top基因界面,填写top基因的数量(如top10),点击【创建基因集】,填写基因集名称,点击【创建】完成基因集的创建。
2025-01-08 08:44:53
664
原创 程序可以自己跑的,不用盯着
这是因为远程访问Linux时,在终端中直接运行的任务通常与当前的终端会话绑定,这意味着任务的运行依赖于这个终端会话的持续存。的用户界面和操作(例如输出提示信息、询问信息等),使得用户可以在前台运行的程序中保持良好的交互体验,而不被其他进程的运行状态干扰。(挂断信号)的信号。,每个进程执行不同的任务,从而在单个终端中高效地处理多个任务。,因此,如果你的终端会话断开(如SSH连接中断、网络连接丢失或关闭终端窗口等),所有关联的。:当你将一个任务放在后台运行时,你可以继续在同一个终端使用其他命令,进行其他任务。
2025-01-07 11:23:25
724
原创 R语言基础| 中级绘图
其中,n 是要生成的随机数的个数,mean 是正态分布的均值,sd 是正态分布的标准差。它是一种多变量可视化方法,通过在一个图形中显示多个散点图,可以帮助我们观察和理解变量之间的相互关系,特别是在探索性数据分析中非常有用。shape可以设置为数字值,0-25之间,也可以设置为字符型:“circle”(实心圆形),“square”(实心正方形),“triangle”(实心三角形)等。与plot3d()相比,scatter3d()包含各种回归曲面,eg线性,二次,平滑和加性等类型的回归曲面。
2025-01-06 11:28:04
1353
原创 R语言基础| 广义线性模型
该数据从601个变量身上收集了9个变量,包括一年来出现感情危机的频率(出轨频率)、参与者性别、年龄、婚龄、是否有子女、宗教信仰程度(1-5,数字越大越信仰)、学历、职业、对婚姻的自我评分(1-5,数值越大,越感觉幸福)。用robustbase包中的epilepsy癫痫数据为例,研究治疗条件(Trt)、年龄(Age)和前8周内的基础癫痫发病数(Base)对后8周内癫痫发病数(Ysum)的影响。首先,创建一个虚拟数据集,设定年龄、婚龄和宗教信仰程度为它们的均值,对婚姻的自我评分的范围为1-5.
2025-01-02 10:30:51
1087
原创 生信分析需要使用服务器的八个理由
这点我想大家深有体会,很多软件或函数任务运行时可能会花费数天时间,在本地电脑运行期间若自己的电脑若遇到断电、断网等问题,运行中的任务则会付之一炬。这一点可以说是刚需,公众号内的粉丝大都是研究单细胞测序的,现在动辄就百万细胞的数据集,拿自己的8G内存笔记本显然配置够不上需求。相较于大家的塑料校园网,服务器每台接入1000M的专线,且我们具有正规备案,即使访问境外的数据库依旧可以达到相同的速度,即使是使用最简单的。运行,即使本地的电脑掉线或关机,服务器依然可以继续执行任务,完全不用守着自己的电脑。
2024-12-31 15:01:13
912
原创 给生信入门初学者的小贴士
做教程的一定比学教程的人知识储备多,无论各类自媒体的教程做的有多棒,也只能授汝以鱼,若想真正的获得"渔技",还是得去Github或者软件帮助信息中提供的官方vignette中学习完整的workflow。”,说的通俗些叫“磨刀不误砍柴工”,很多同学不听我的建议,仍然略过编程基础直接学习生信,结果是遇到俄罗斯套娃式的一系列报错无从下手,又都返回来找我答疑。我不是大神,但我乐于分享,自我充实的同时也在B站和公众号做了很多的教程,目前B站的同名公众号总播放量已经超过十万,除了已有的单细胞系列教程外、
2024-12-30 14:31:28
872
原创 足够支持你完成硕博生涯的生信环境
这点我想大家深有体会,很多软件或函数任务运行时可能会花费数天时间,在本地电脑运行期间若自己的电脑若遇到断电、断网等问题,运行中的任务则会付之一炬。
2024-12-29 13:12:14
673
原创 单细胞测序做到啥程度能毕业|博士篇
另外,由于我精力有限,只翻了几篇文章,具有一定的偶然性,并且虽然我们的主题是单细胞测序,但事实上我们谈论的主要是单细胞转录组测序(我此前所做的教程也是,其实还有很多的单细胞组学我们没有时间去介绍),大家有更多的想法也欢迎在后台或交流群(除了这两篇之外我还读了一篇博士论文,该论文的篇幅也在一百页左右,主要内容是20只不同分组的模式动物的单细胞测序分析,并且没有实验验证内容(包含一些临床样本的免疫荧光验证)。既然已经观察到了巨噬细胞与AS之间的伴随关系,接下来作者就涉及实验进一步的探讨了其中的机制。
2024-12-26 10:50:52
1027
原创 SeekSpace细胞通讯分析
,由作者人工收集具有文献支撑的人类、小鼠配受体互作关系,其中包含大约3300对互作关系:40%的分泌自分泌/旁分泌信号相互作用、17%的细胞外基质受体互作和13%的细胞-细胞接触互作和。能够通过排列检验评估每个配受体对的互作可能性,并推算出具有生物学意义(考虑配体信号、受体、辅因子的参与)的细胞通讯。:行名为细胞名的注释数据,每一列是一种注释信息,与单细胞不同的是,空转这里需要有一列名为。:空间转录组数据的表达矩阵,行名为基因名,列名为细胞名。需要先计算出各类型的过表达配体/受体,与单细胞部分一样,
2024-12-25 14:33:21
686
原创 R语言基础| 功效分析
薪水和福利待遇能解释30%的员工满意度的方差,从现实出发(即集合A和集合B),领导风格能解释35%的员工满意度的方差。算法2:当评价一组预测变量(集合B)对结果的影响超过第2组变量(协变量,(集合A))多少时适用:f2=(集合A和B中变量对总体方差的解释率-集合A中变量对总体方差的解释率)/(1-集合A和B中变量对总体方差的解释率)P是两个心理变量的总体相关性大小,设置显著水平为0.05,而且如果H0是错误的,我们想有90%的信心拒绝H0,那么研究需要多少观测值?P为一个假设的双因素概率表。
2024-12-23 11:08:50
1003
原创 主成分分析和因子分析
1.主成分分析(PCA):一种数据降维技巧,可以将大量相关变量转为一组很少的量,这些无关变量成为主成分。在PCA中,各主成分(eg:PC1和PC2)既要求所解释的方差最大化,又要使各主成分之间不相关。主成分相当于变量的果。2.探索性因子分析(EFA):是一系列用来发现一组变量的潜在结构的方法。因子(F1,F2)则被当作观测变量的结构基础或”因”。因子间可以有相关性,但也不是必需的。备注:载荷矩阵:在因子分析或主成分分析(PCA)中,载荷矩阵(loading matrix)是一种重要的输出结果。
2024-12-20 16:22:04
942
原创 除了铁死亡,还有铜死亡?!
如流程图所示,作者首先从TCGA数据库中找到了头颈部麟状癌(HNSC)患者的测序信息,并根据GEO数据库中的临床数据和文献报道找到了398个与铜死亡相关的基因和22个TME中主要的细胞类型,之后对铜相关基因和TME细胞类型进行Bootstrap-multicox回归分析寻找了14个潜在的铜死亡相关基因和6种潜在的TME细胞类型,以此标准对每个HNSC患者进行Cup和TME评分(Fig. 2A, 2B),Cup低/TME高临床预后更好,被认为是低风险人群,选择口腔癌样本的单细胞测序数据对此发现进行验证;
2024-12-19 10:21:51
537
原创 一文了解Trimmomatic及使用方法
是 Trimmomatic 利用 PE 测序进行短接头序列去除的典范,如果文库插入片段比测序读长短,利用正反向测序 reads 中一段碱基可以完全反向互补的特点,将两个接头序列与 reads 进行比对,同时两条 reads 之间也互相比对,可以将 3' 末端哪怕只有 1bp 的接头序列都可以被准确去除,相对 B 模式去除接头污染更彻底。contig50也大大增加。:测序过程中,序列的质量通常不均匀,Trimmomatic 可以根据用户指定的阈值进行质量过滤,去除低质量的序列,提高数据的可靠性。
2024-12-18 10:57:08
1055
原创 拟时序分析神包—monocle的三篇《Nature》
特别的是,一些因子的结合基序在启动子和增强子中高度富集,其基序与已知的肌肉调节基序一致(Figure4b)。大多数单细胞分析的研究旨在找出发育过程中的关键调节因子,Monocle算法进行的拟时序分析,可以用来展示分化过程中的基因表达水平,所以作者选择了最近一篇研究中的RNA-seq数据进行重新分析,轨迹开始的地方是具有高增殖活性(Ccnb2,Cdk1)的细胞,分化过程中逐渐转向AT1(Pdpn)和AT2(Sftpb)两个进化分支,AT1和AT2分别是I型和II型肺上皮细胞(Figure3a)。
2024-12-17 11:06:52
1570
原创 10xGenomics官方可视化工具——Loupe Browser
Loupe Browser是⼀款10xGenomics开发的交互式桌⾯应⽤程序,⽤于探索10x单细胞数据,可以用来找出感兴趣的细胞、找出显著差异表达的基因、鉴定细胞类型、探索细胞亚类和数据共享。
2024-12-14 10:15:57
1149
原创 两天手搓药物干扰细胞实验+RT-qPCR鉴定
浓度处理48h时,该基因显著下调。给我们后续探究该受体在肿瘤发生发展中的作用机制提供了前期的参考依据。问卷链接,文末阅读原文可直达:https://www.wjx.cn/vm/tpYsP8D.aspx#通过前期单细胞转录组分析,我们发现在表达该受体的癌细胞中,某基因变化差异显著,因此我们利用。经查阅文献,我们选择了不同浓度的受体激动剂进行不同时间的处理,发现在。在大家的支持下已经完成了两次线下实验交流活动(我们给大家组建了实验基地交流群,大家可以添加客服微信,备注“Biomamba联合。
2024-12-12 10:22:53
217
原创 BD Rhapsody定量输出文件读取
接下来的分析探索就请大家自己完成啦,大家可以参考原数据集: https://ngdc.cncb.ac.cn/gsa-human/browse/HRA001033。RSEC_Reads: RSEC读数 - 该基因在对应细胞中的RSEC(Robust Single-cell Effective Count)读取数。RSEC_Adjusted_Molecules: RSEC调整后的分子数 - 基于RSEC方法调整后的分子计数。Raw_Molecules: 原始分子数 - 该基因在对应细胞中的原始分子计数。
2024-12-11 10:47:55
745
原创 Rstudio-server的安装、配置、维护
这是一个我实际遇到过的报错,导致Rstudio无法正常启动,提示信息为:r-v4-3-1-graphics-engine-version-16-is-not-supported-by-rstudio-server-2021.09.0-351-on-ubuntu-20-04。突然想到,Rstudio的bug可能会影响到我这台服务器上shiny-sever的运行,果然,shinyAPP中的图片均不能正常显示(的形式访问这个Rstudio-sever了(你已经能登进服务器,不用我说IP是什么了吧~)
2024-12-10 09:46:30
1280
原创 2024年了, 都哪些组织有空转数据(人类篇)
的文章列在下表中(包含组织分类、研究方向、DOI、期刊名、当年影像因子、JCR分区、发表年份),精力有限、整理了50篇,这次我们检索了空间转录组文章中包含人类数据的作品,我们尽量在。结直肠癌中HLA-G+癌细胞和SPP1+ 巨噬细胞的细胞..
2024-12-09 11:17:23
972
原创 microRNA-靶标相互作用及疾病和药物关联分析
本期我们介绍的multiMiR,既是一个R包、也是一个数据库,它提供了一个综合的平台来分析miRNA(miRNA(microRNA)是一类长度为18-25个核苷酸的非编码小RNA分子,能够通过与靶mRNA的3’非翻译区(3’UTR)或其他区域结合,调控基因的表达)与靶基因之间的相互作用。:miRNA在癌症中的作用主要体现在其调控肿瘤抑制基因或癌基因。:如miR-1和miR-133a参与心肌细胞的生长和心脏的发育调控,miR-21和miR-29在心血管疾病的纤维化过程中发挥作用。
2024-12-07 10:43:22
707
原创 2024年,Warburg效应依旧能发《Nature》!
●然而,肿瘤细胞内的乳酸来源仍不明确。深入的分子机制实验提示:乳酸化修饰是NBS1蛋白与MRE11相互作用所必须的,K388乳酸化修饰位点位于NBS1与MRE11的接触面,K388乳酸化修饰改变NBS1蛋白构象,促使NBS1蛋白和MRE11结合形成MRN复合物,MRN复合物快速募集到DNA损伤部位,增强其在DNA损伤修复中的功能。研究揭示了乳酸在肿瘤耐药中的关键作用,乳酸通过促进NBS1的乳酸化修饰,增强了肿瘤细胞的DNA损伤修复能力,使其在放化疗损伤后迅速启动修复,降低了治疗效果,导致耐药发生。
2024-12-05 10:51:02
703
原创 系统崩了怎么办
最近丢了一台服务器给技术使用,由于我们的服务器有root权限,技术在修改配置文件时失误把系统弄崩了,导致sudo失效(root密码也丢失)。好在我们的服务器环境独立并且有一键重置功能。仪表台的使用大家可以扫文末客服微信二维码获取大禹系统使用手册。布置后的实例仍能保留原有环境中硬盘存贮的文件,只是系统配置文件被刷新。从下图可以看到,系统已经可以正常使用root权限啦。所以,大家放心大胆的玩Linux吧!访问链接:https://biomamba.xiyoucloud.net/第一步,中止实例的运行。
2024-12-04 10:46:42
341
原创 fastq文件预处理神器——fastp
在fastp的使用过程中会自动识别并过滤非配对reads,如果有需要,你可以使用--unpaired1和--unpaired2来分别输出reads1和reads2的非配对reads。--merged_out可以指定配对reads的输出文件路径,--out1和--out2输出的是通过所有过滤条件,但不能成功配对合并的reads。其中-i选项的参数为正向reads的路径,-I选项的参数为反向reads的路径,-o和-O选项的参数则对应正向和反向reads的输出路径。
2024-12-03 14:18:35
1278
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人