时间序列滞后性的可视化——交叉相关图(Python实现)

287 篇文章 ¥59.90 ¥99.00
本文介绍了时间序列分析中的滞后性概念,通过Python使用NumPy和Matplotlib绘制交叉相关图进行可视化。文章展示了如何计算并绘制两个时间序列的相关系数矩阵,帮助理解时间序列间的滞后性,为时间序列分析提供支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列滞后性的可视化——交叉相关图(Python实现)

时间序列分析是一种广泛应用于统计学和机器学习领域的技术,用于研究和预测随时间变化的数据。在时间序列分析中,了解两个时间序列之间的滞后性是非常重要的。滞后性指的是一个时间序列相对于另一个时间序列的延迟或领先。为了可视化和理解时间序列之间的滞后性,我们可以使用交叉相关图。

在本篇文章中,我们将使用Python来实现交叉相关图的绘制。我们将使用NumPy和Matplotlib库来进行数据处理和可视化。让我们开始吧!

首先,我们需要导入所需的库:

import numpy as np
import matplotlib.pyplot as plt

接下来,我们创建两个示例时间序列。假设我们有两个时间序列data1和data2,长度分别为N和M。这里我们使用NumPy的randn函数生成随机数据作为示例:

N 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值