时间序列滞后性的可视化——交叉相关图(Python实现)
时间序列分析是一种广泛应用于统计学和机器学习领域的技术,用于研究和预测随时间变化的数据。在时间序列分析中,了解两个时间序列之间的滞后性是非常重要的。滞后性指的是一个时间序列相对于另一个时间序列的延迟或领先。为了可视化和理解时间序列之间的滞后性,我们可以使用交叉相关图。
在本篇文章中,我们将使用Python来实现交叉相关图的绘制。我们将使用NumPy和Matplotlib库来进行数据处理和可视化。让我们开始吧!
首先,我们需要导入所需的库:
import numpy as np
import matplotlib.pyplot as plt
接下来,我们创建两个示例时间序列。假设我们有两个时间序列data1和data2,长度分别为N和M。这里我们使用NumPy的randn函数生成随机数据作为示例:
N