从三个最重要的神经网络,经Transformer 到Generative Pre-trained Transformer(GPT)

#GPT-4o mini 来袭:开发者如何驾驭新一代AI模型?#

生成式人工智能(Generative AI)因其能够创造逼真的文本、图像、音频等内容而备受瞩目。在生成式人工智能的背后,神经网络模型起到了至关重要的作用。本文将深入探讨生成式人工智能的三个最重要的神经网络——循环神经网络(RNN)、卷积神经网络(CNN)和生成对抗网络(GAN),并介绍它们的发展历程,最终演变到Transformer和Generative Pre-trained Transformer(GPT)模型。

 一、生成式人工智能最重要的三个神经网络

8f49bd3e05d6449aa379f7f42cdbeed9.jpeg

神经网络模型(Neural Network Model)是一种受生物大脑启发的机器学习模型,用于模拟人脑的结构和功能。它由大量相互连接的人工神经元(节点)组成,这些神经元按层级结构排列,通常包括输入层、隐藏层和输出层。神经网络的主要特点包括:学习能力,可以从数据中学习并调整权重,以提高性能和适应新情况;并行处理,能够并行执行计算,高效处理大量数据;非线性映射,可以处理复杂的非线性关系和模式;容错性,对噪声和不完整数据有一定的鲁棒性。神经网络通过前向传播的方式工作,输入数据通过网络各层传递,每个神经元接收上一层的输入,应用激活函数,然后将结果传递给下一层。网络通过调整神经元之间的连接权重来学习和优化其性能。

 

神经网络是生成式人工智能的基础,使机器能够生成模仿真实数据分布的新数据实例。其核心在于神经网络从大量数据中学习,识别那些不易察觉的模式、结构和关联。这种学习能力使它们能够生成新颖的内容,从逼真的图像和音乐到复杂的文本等。神经网络在生成式AI中的多功能性和强大能力,开辟了创造力、自动化和问题解决的新前沿,彻底改变了我们对内容创作和数据分析的方法。

6aee5e4e5be64075a1ddf0f1b0d81510.png

An artificial neural network is an interconnected group of nodes, inspired by a simplification of neurons in a brain. Here, each circular node represents an artificial neuron and an arrow represents a connection from the output of one artificial neuron to the input of another.

1943年,神经生理学家沃伦·麦卡洛克和数学家沃尔特·皮茨开发了第一个神经网络模型。他们在一篇论文中描述了神经元可能的工作原理,并用电路模拟了简单的神经网络,试图解释大脑中的神经元功能。尽管这一早期模型是理论性的,而非实用的实现,但它为未来人工神经网络的发展奠定了基础。1958年,心理学家弗兰克·罗森布拉特发明了感知器,这通常被认为是第一个能够学习的人工神经网络。感知器旨在模拟人脑处理视觉数据并学习识别物体的过程。1960年,斯坦福大学的伯纳德·威德罗和马西安·霍夫开发了称为“ADALINE”和“MADALINE”的模型。MADALINE(多自适应线性元素)是第一个应用于实际问题的神经网络,利用自适应滤波器消除电话线上的回声。这些早期模型为今天复杂神经网络和深度学习领域的发展铺平了道路。

神经网络的多样性和强大能力在生成式AI的发展中起到了至关重要的作用。以下将介绍三种关键的神经网络架构:卷积神经网络、循环神经网络和生成对抗网络,这些架构在各自的领域中展示了独特的优势和应用潜力。

1、卷积神经网络

卷积神经网络(Convolutional Neural Network, CNN)是一种特殊的深度学习神经网络结构,主要用于处理具有网格拓扑结构的数据,如图像。CNN的主要特点包括局部连接(每个神经元只与输入数据的一个局部区域相连)、权值共享(同一个特征图中的神经元共享相同的权重)以及多层结构(通常包含多个卷积层、池化层和全连接层)。CNN的基本组成部分包括卷积层(使用卷积核提取输入的局部特征)、池化层(对特征图进行下采样,减少参数数量)和全连接层(将特征映射到最终的输出)。

卷积神经网络专门处理结构化网格数据,如图像,使其成为视觉数据分析和生成的基石。通过自动和自适应地学习空间层次特征,CNN可以生成新的图像或修改现有图像,具有惊人的细节和逼真度。这一能力在推进计算机视觉领域方面起到了关键作用,CNN被用于创造逼真的艺术作品、增强照片,甚至生成与现实世界图像无法区分的全新视觉内容。

谷歌开发的DeepDream就是CNN在实践中的经典例子,它以超现实、梦幻的方式增强和修改图像,展示了CNN在解释和创作视觉数据方面的创造力。

2、循环神经网络

循环神经网络(Recurrent Neural Network, RNN)是一种用于处理和预测序列数据的神经网络结构。与传统的前馈神经网络不同,RNN具有循环连接,能够记住以前的信息并将其应用于当前的输入。RNN的主要特点包括:1)网络中的神经元在时间步长上具有连接,可以保留和利用之前时间步的信息。2)特别适用于时间序列数据、语音识别、文本生成和翻译等任务。3)在不同的时间步之间共享相同的权重,使得网络能够处理任意长度的输入序列。

循环神经网络(RNN)擅长处理序列数据,使其非常适合处理时间序列、语音或文本等任务。RNN能够记住长时间的信息,其处理输入序列的能力使其在生成连贯且具有上下文相关性的文本或音乐方面表现出色。这一架构彻底改变了自然语言处理和生成,使得创建复杂的AI聊天机器人、自动写作助手和动态音乐创作软件成为可能。

谷歌的Magenta项目利用RNN创作新的音乐作品,展示了RNN在理解和生成复杂序列(如音乐作品)方面的能力,通过学习大量现有音乐数据集实现这一点。

3、生成对抗网络

生成对抗网络(Generative Adversarial Network, GAN)是一种由生成器和判别器两个神经网络组成的框架,二者在零和博弈的框架中相互竞争。生成器负责生成与真实数据相似的虚假数据,而判别器则试图区分真实数据和生成的数据。GAN的工作原理是通过对抗训练,生成器不断改进其生成的数据以使其更加逼真,而判别器则不断提高其区分真实数据和虚假数据的能力。通过这种对抗过程,生成器生成的数据逐渐逼近真实数据的分布。

这种创新的结构使得GAN能够生成高度逼真和详细的图像、视频,甚至是声音。GAN的竞争性促使其不断改进,最终生成的内容往往与真实世界的数据无法区分。其应用范围包括创建逼真的图像和深伪技术,以及推动药物发现和材料设计。

NVIDIA开发的StyleGAN是GAN能力的典范,它生成了高度逼真的人脸和物体。这项技术被用于时尚和设计领域,呈现出令人惊叹的产品和风格。

特性卷积神经网络 (CNN)循环神经网络 (RNN)生成对抗网络 (GAN)
应用处理结构化网格数据,如图像。用于视觉数据分析和生成。处理序列数据,如时间序列、语音和文本。生成高度逼真和详细的图像、视频和声音。
优势自动和自适应地学习空间层次特征;生成细节和逼真度极高的图像。记住长时间信息;生成连贯且上下文相关的文本或音乐。两个网络竞争性学习,不断改进生成内容;生成的内容与真实数据无法区分。
实例

谷歌的DeepDream,用于增强和修改图像,展示创造力。

谷歌的Magenta项目,用于创作新的音乐作品。

NVIDIA的StyleGAN,用于生成高度逼真的人脸和物体。

 为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《R 探索临床数据科学》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!

专栏《R 探索临床数据科学》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482

d5421fa3e83749e4bac188cb058fbd92.png

二、从 Transformer 到Generative Pre-trained Transformer(GPT)

63e4754008204a18bcfe4950bb79150b.jpeg

神经网络是生成式人工智能的基础,使机器能够生成模仿真实数据分布的新数据实例。其核心在于神经网络从大量数据中学习,识别那些不易察觉的模式、结构和关联。这种学习能力使它们能够生成新颖的内容,从逼真的图像和音乐到复杂的文本等。其实,还有一个生成式人工智能很重要的基础,那就是Transformer。

1、Transformer架构介绍

近年来,Transformer架构引领了自然语言处理(NLP)领域的革命性变革,彻底改变了机器理解和生成语言的方式。Transformer的核心优势在于其能够同时处理句子中所有单词之间的关系,极大地提升了语言模型的效率和效果。这一架构成为了诸如生成式预训练Transformer(GPT)等高级语言模型的基础,支持了从生成连贯且上下文相关的文本到翻译语言和总结文档的广泛应用。本文将详细探讨Transformer架构的原理、应用及其在NLP领域的影响。

Transformer由Vaswani等人在2017年提出,其核心创新在于放弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用自注意力机制(Self-Attention Mechanism)。这种机制允许模型在处理单词时,能够同时关注句子中的所有其他单词,从而捕捉到更丰富的上下文信息。

Ashish Vaswani 在南加州大学完成了他的博士学位,并曾在 Google Brain 担任研究员,参与了 Transformer 模型的开发。Ashish Vaswani 也是具有里程碑意义的论文《Attention Is All You Need》的合著者之一,该论文介绍了Transformer模型。该模型已成为AI领域的基础,特别是在NLP任务中。

 循环神经网络 (RNN)卷积神经网络 (CNN)Transformer 自注意力机制
基本原理通过递归循环处理序列数据,每次处理一个序列元素通过卷积层和池化层处理数据,捕捉局部特征使用自注意力机制,捕捉输入序列中所有元素之间的依赖关系
数据处理方式顺序处理,前一个状态影响下一个状态并行处理,通过滑动窗口捕捉局部特征并行处理,整个序列同时处理
计算效率计算时间长,无法并行处理计算效率高,能够并行处理计算效率高,能够并行处理
处理长距离依赖较弱,难以捕捉长距离依赖关系较强,但主要捕捉局部特征强,通过自注意力机制有效捕捉长距离依赖关系
主要应用领域序列数据处理,如时间序列预测、语言模型图像处理,如图像分类、目标检测自然语言处理,如机器翻译、文本生成、情感分析
输入输出关系逐步产生输出,每个时间步对应一个输出整体输入对应整体输出整体输入对应整体输出
参数共享无参数共享卷积核参数共享参数共享,通过注意力头共享
平行化能力平行化困难容易平行化容易平行化
记忆能力有记忆能力,能够保留前序列信息无记忆能力,处理当前局部信息有记忆能力,通过注意力机制保留全局信息
模型复杂性相对较低取决于卷积层数和滤波器数量相对较高,需要更多计算资源

2、自注意力机制

自注意力机制是Transformer架构的核心组件。其基本思想是通过计算输入序列中每个单词与其他所有单词的相关性,生成一组注意力权重,并基于这些权重加权求和输入序列,以生成新的表示。具体来说,输入序列经过嵌入层和位置编码后,进入多头自注意力层。每个注意力头都会独立计算注意力权重,并生成新的表示,最后将这些表示拼接并线性变换,得到最终的输出。

可以将自注意力机制比喻成一个团队合作项目中的信息分享过程:

嵌入层和位置编码:首先,每个团队成员(输入序列中的每个单词)都有自己独特的技能和位置(嵌入表示和位置编码)。

多头自注意力层:在团队会议中,每个成员会与其他所有成员交流,评估每个人提供的信息有多重要(计算注意力权重)。

独立计算注意力权重:每个团队成员会分别与每个其他成员进行一对一的详细讨论,理解和吸收他们的信息(每个注意力头独立计算权重并生成新的表示)。

拼接和线性变换:最后,所有成员的信息汇总成一个统一的报告(将所有注意力头的表示拼接并线性变换),这个报告就是整个团队共同的输出(最终的输出表示)。

3、编码器-解码器架构

Transformer采用编码器-解码器架构。编码器将输入序列转换为一组隐含表示,解码器则根据这些隐含表示生成输出序列。编码器和解码器均由多层堆叠的自注意力和前馈神经网络组成。编码器将输入序列逐层处理,生成隐含表示,解码器在生成每个输出单词时,既参考编码器的隐含表示,也参考先前生成的输出单词。

Transformer 模型就像一个双向翻译团队,其中编码器是翻译员甲,解码器是翻译员乙。

编码器(翻译员甲):将输入的源语言文本(例如中文)转换为一组隐含表示。翻译员甲会仔细阅读并理解整篇中文文本,通过多次反复推敲和深思熟虑,将其逐层处理,提炼出其中的核心意思和信息点,就像把一篇复杂的文章总结成一组简洁的笔记。

解码器(翻译员乙):根据这些隐含表示生成目标语言文本(例如英文)。翻译员乙拿到翻译员甲的笔记(隐含表示),并参考这些笔记逐词生成英文句子。同时,翻译员乙还会回顾已经生成的英文单词,确保上下文连贯和语义准确,就像在写作时既要参考大纲(隐含表示)也要注意前后文的衔接。

在整个过程中,编码器(翻译员甲)通过多层堆叠的自注意力机制和前馈神经网络处理输入序列,将其转化为隐含表示。解码器(翻译员乙)则利用这些隐含表示和已生成的输出单词,通过相同的机制逐层生成目标语言文本。就像翻译员甲和乙在每一层处理过程中,会动态地评估并权衡每个单词或信息点的重要性,以确保最终翻译结果既准确又流畅。

4、Transformer的一些重要组成部分

 特点解释
自注意力机制(Self-Attention)允许模型同时考虑输入序列中的所有位置。就像一位编辑在编辑文章时,能够同时参考整篇文章的所有段落,以确保连贯性和逻辑性。
多头注意力(Multi-Head Attention)将自注意力机制扩展为多个注意力头,每个头学习不同的注意权重。就像一个团队中的多名编辑,每个人都从不同的角度审阅文章,以捕捉各种类型的错误和改进建议。
堆叠层(Stacked Layers)由多个相同的编码器和解码器层堆叠而成,有助于模型学习复杂的特征表示和语义。就像多层的编辑和校对流程,每一层都进一步完善和优化文章内容。
位置编码(Positional Encoding)由于没有内置的序列位置信息,位置编码用于表达输入序列中单词的位置顺序。就像在编辑文章时添加页码和段落编号,以确保各部分内容按正确顺序排列和引用。
残差连接和层归一化(Residual Connections and Layer Normalization)减轻训练过程中的梯度消失和爆炸问题,使模型更容易训练。就像在长时间编辑过程中定期保存文档和优化排版,以防止丢失工作进度并保持文章的清晰度。
编码器和解码器(Encoder and Decoder)编码器处理输入序列,解码器生成输出序列,适用于序列到序列的任务。就像一个双向翻译团队,翻译员甲将原文提炼成简明笔记(编码器),翻译员乙根据笔记生成目标语言文本(解码器),确保翻译准确且连贯。

Transformer架构通过其革命性的自注意力机制,彻底改变了自然语言处理领域的模型设计和应用。生成式预训练Transformer(GPT)展示了这种架构在生成连贯文本、语言翻译和文档摘要等方面的强大能力。理解生成模型与判别模型的区别,能够帮助我们在不同任务中有效地应用AI技术,确保其高效性和合理性。随着技术的不断发展,Transformer及其衍生模型将在更多领域展现出更大的潜力,为自然语言处理的未来带来更多可能。

5、Generative Pre-trained Transformer (GPT)

Transformers 革新了机器理解和生成自然语言的方式,得益于它们能够同时处理句子中所有单词之间的关系。这种架构支撑了一些最先进的语言模型,如生成式预训练变换器(Generative Pre-trained Transformer,GPT),使其能够广泛应用于生成连贯且具有上下文相关的文本、翻译语言和总结文档等任务。

2018年,OpenAI发布了GPT-1,这是第一个基于Transformer的生成预训练变换器模型。GPT-1的设计理念是先进行无监督的预训练,然后进行有监督的微调。它通过在大量文本数据上进行预训练,学习语言的统计特性和上下文关系,从而在下游任务中表现出色。尽管GPT-1的参数量相对较小,但它为后续的GPT模型奠定了基础。

2019年,OpenAI推出了GPT-2,这一版本在参数量上有了显著的提升,从GPT-1的1.17亿参数增加到15亿参数。GPT-2的发布标志着生成语言模型能力的显著提升,它能够生成更加连贯和上下文相关的文本。GPT-2在各种自然语言处理任务中表现出色,包括文本生成、翻译、摘要等。

2020年,OpenAI发布了GPT-3,这是GPT系列中的又一次飞跃。GPT-3的参数量达到了1750亿,是GPT-2的十倍多。GPT-3的庞大参数量使其在理解和生成语言方面表现出色,能够处理更复杂的语言任务,并生成更加自然的文本。

2023年,OpenAI发布了GPT-4,进一步提升了模型的能力和性能。GPT-4不仅在参数量上有所增加,还在处理复杂语言任务、理解上下文、生成连贯文本等方面表现出色。GPT-4的发布标志着自然语言处理技术的又一次重要进步,为各种应用场景提供了更强大的支持。

2024年,OpenAI推出的“GPT-4o mini”迷你AI模型和SearchGPT原型,都是其致力于在“多模态”领域保持领先地位的一部分。所谓“多模态”,即在一个工具内部,提供多种类型的AI生成媒体,包括文本、图像、音频、视频以及搜索功能。

 

 

 

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
GPT (Generative Pre-trained Transformer)是由OpenAI公司开发的一系列自然语言处理模型。它采用多层Transformer结构来预测下一个单词的概率分布,通过在大型文本语料库中学习到的语言模式来生成自然语言文本。GPT系列模型包括多个版本,如GPT-2和GPT-3等。\[2\]这些模型在不同任务中展现了出色的性能,包括零样本学习和少样本学习等。GPT使用Transformer的Decoder结构,并对其进行了一些改动,保留了Mask Multi-Head Attention。\[3\]通过这些改进,GPT模型在自然语言处理领域取得了显著的成果。 #### 引用[.reference_title] - *1* [深入理解深度学习——GPTGenerative Pre-Trained Transformer):基础知识](https://blog.csdn.net/hy592070616/article/details/131341012)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LLM系列之GPTGPTGenerative Pre-trained Transformer)生成式预训练模型](https://blog.csdn.net/yanqianglifei/article/details/130756814)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据科学和人工智能兴趣组

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值