再讲数据科学的数据变换和数据精简

下面内容摘录自《R 语言与数据科学的终极指南》专栏文章的部分内容,每篇文章都在 5000 字以上,质量平均分高达 94 分,看全文请点击下面链接:​​​​​​​

4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客文章浏览阅读135次。数据预处理是数据科学工作流中的重要环节。通过数据清洗、数据集成、数据变换和数据规约等步骤,可以显著提高数据质量,为后续的分析和建模提供坚实基础。另外,R语言的基本函数已经能够帮助我们很好地进行数据的查阅和初步探索。_r数据预处理https://blog.csdn.net/2301_79425796/article/details/140837172?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22140837172%22%2C%22source%22%3A%222301_79425796%22%7D

欢迎订阅我们专栏

.......前面部分请点击上面链接看原文

3、数据变换

数据变换是数据预处理的重要环节,旨在把数据转化为适宜分析和建模的形态。常见的数据变换方式涵盖数据标准化、数据归一化、数据编码以及特征工程。

数据标准化能把数据变为均值为 0、标准差为 1 的标准正态分布,常应用于距离度量类的算法,像 K 近邻算法和 SVM 等。比如在临床数据分析中,对于患者的各项生理指标,如血压、血糖等,通过标准化处理,能消除不同指标量纲的差异,使模型更准确地评估患者的健康状况。

数据归一化会将数据缩放至特定范围(通常是 0 到 1),这在神经网络和梯度下降算法中颇为常用。以临床药物试验为例,将不同剂量的药物效果进行归一化处理,能更直观地对比不同剂量下的疗效差异。

数据编码是把分类变量转成数值型变量的过程。常见的有独热编码,即将分类变量变为多个二进制变量;还有标签编码,把分类变量的每个类别对应为一个整数。在临床病例的分类中,如疾病的类型,通过编码可以方便地进行数据分析。

特征工程是借创建新特征来提高模型表现。比如特征组合,把多个特征整合成一个新特征;特征分解,把一个特征拆解为多个特征;删除重复记录,清除完全相同的记录;合并重复记录,把包含相同关键字段的记录合并。在临床研究中,对于患者的多种症状和检查结果,通过特征工程的处理,可以提取更有价值的信息,辅助疾病的诊断和治疗方案的制定。

4、数据精简

数据精简是数据预处理的最后一步,其目的在于减少数据维度,从而提升模型的效率和性能。常见的数据精简方法包含特征选择和特征提取。

特征选择是借助选择最相关特征以降低数据维度的手段。常见的特征选择方法众多,像过滤法,它基于统计检验或相关性分析来挑选特征;包装法,利用机器学习算法进行特征的选择;嵌入法,则是在模型训练进程中自动完成特征的选择。

特征提取是把原始特征转变为新的低维特征以实现数据维度的降低。例如主成分分析(PCA),能将数据投影到全新的正交特征空间;线性判别分析(LDA),可以寻找能够最大化类别间差异的特征。

特征工程作为通过创建新特征来增强模型性能的过程,常见方法有特征组合,即把多个特征组合成一个新特征;特征分解,将一个特征分解为多个特征;此外,还包括删除完全相同的记录以及合并包含相同关键字段的记录。

以临床数据分析为例,假设我们在研究某种疾病的相关数据。比如分析患者的血液指标、症状表现、家族病史等众多特征。通过特征选择,我们可能发现某些血液指标与疾病的相关性极强,而一些症状表现的相关性较弱,从而只保留相关性强的特征。再通过特征提取,比如运用主成分分析,将众多复杂的血液指标转换为几个综合的主成分,降低数据维度。而在特征工程中,我们可以把不同的症状表现组合成一个新的综合症状特征,或者对某些复杂的家族病史特征进行分解,以便更清晰地分析其对疾病的影响。通过这些数据处理方法,能够更高效准确地建立疾病预测模型,为临床诊断和治疗提供有力支持。

.......后面部分请看原文

欢迎订阅我们专栏,深度系统地学习R语言。 

为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《R 语言与数据科学的终极指南》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!

专栏《R 语言与数据科学的终极指南》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值