下面内容摘录自《R 语言与数据科学的终极指南》专栏文章的部分内容,每篇文章都在 5000 字以上,质量平均分高达 94 分,看全文请点击下面链接:
欢迎订阅我们专栏
.......前面部分请点击上面链接看原文
3、数据变换
数据变换是数据预处理的重要环节,旨在把数据转化为适宜分析和建模的形态。常见的数据变换方式涵盖数据标准化、数据归一化、数据编码以及特征工程。
数据标准化能把数据变为均值为 0、标准差为 1 的标准正态分布,常应用于距离度量类的算法,像 K 近邻算法和 SVM 等。比如在临床数据分析中,对于患者的各项生理指标,如血压、血糖等,通过标准化处理,能消除不同指标量纲的差异,使模型更准确地评估患者的健康状况。
数据归一化会将数据缩放至特定范围(通常是 0 到 1),这在神经网络和梯度下降算法中颇为常用。以临床药物试验为例,将不同剂量的药物效果进行归一化处理,能更直观地对比不同剂量下的疗效差异。
数据编码是把分类变量转成数值型变量的过程。常见的有独热编码,即将分类变量变为多个二进制变量;还有标签编码,把分类变量的每个类别对应为一个整数。在临床病例的分类中,如疾病的类型,通过编码可以方便地进行数据分析。
特征工程是借创建新特征来提高模型表现。比如特征组合,把多个特征整合成一个新特征;特征分解,把一个特征拆解为多个特征;删除重复记录,清除完全相同的记录;合并重复记录,把包含相同关键字段的记录合并。在临床研究中,对于患者的多种症状和检查结果,通过特征工程的处理,可以提取更有价值的信息,辅助疾病的诊断和治疗方案的制定。
4、数据精简
数据精简是数据预处理的最后一步,其目的在于减少数据维度,从而提升模型的效率和性能。常见的数据精简方法包含特征选择和特征提取。
特征选择是借助选择最相关特征以降低数据维度的手段。常见的特征选择方法众多,像过滤法,它基于统计检验或相关性分析来挑选特征;包装法,利用机器学习算法进行特征的选择;嵌入法,则是在模型训练进程中自动完成特征的选择。
特征提取是把原始特征转变为新的低维特征以实现数据维度的降低。例如主成分分析(PCA),能将数据投影到全新的正交特征空间;线性判别分析(LDA),可以寻找能够最大化类别间差异的特征。
特征工程作为通过创建新特征来增强模型性能的过程,常见方法有特征组合,即把多个特征组合成一个新特征;特征分解,将一个特征分解为多个特征;此外,还包括删除完全相同的记录以及合并包含相同关键字段的记录。
以临床数据分析为例,假设我们在研究某种疾病的相关数据。比如分析患者的血液指标、症状表现、家族病史等众多特征。通过特征选择,我们可能发现某些血液指标与疾病的相关性极强,而一些症状表现的相关性较弱,从而只保留相关性强的特征。再通过特征提取,比如运用主成分分析,将众多复杂的血液指标转换为几个综合的主成分,降低数据维度。而在特征工程中,我们可以把不同的症状表现组合成一个新的综合症状特征,或者对某些复杂的家族病史特征进行分解,以便更清晰地分析其对疾病的影响。通过这些数据处理方法,能够更高效准确地建立疾病预测模型,为临床诊断和治疗提供有力支持。
.......后面部分请看原文
欢迎订阅我们专栏,深度系统地学习R语言。
为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《R 语言与数据科学的终极指南》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!
专栏《R 语言与数据科学的终极指南》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482