时间序列分析是数据科学中重要的分支,广泛应用于金融、经济、交通、气象等多个领域。近年来,由Facebook开源的Prophet模型因其简单易用、灵活度高和预测效果显著,受到了数据分析和预测领域的广泛关注。本文首先介绍Prophet的背景及其与传统ARIMA模型的对比,包括灵活度、对缺失值的鲁棒性、拟合与预测速度以及参数易于解释等优势。随后,通过R语言中的
Prophet
包,结合经典的AirPassengers数据集,演示如何进行数据预处理、模型建立、未来时间生成与预测,以及可视化结果分析,帮助读者更直观地理解和应用Prophet模型进行时间序列预测。
一、认识Prophet
Prophet 是由 Facebook 开发的一款时间序列预测工具,主要用于具有趋势、季节性和节假日效应的时间序列数据。与传统的 ARIMA 模型相比,Prophet 更加灵活,易于处理缺失值和不规则时间间隔,且无需深入了解时间序列理论即可上手。Prophet 的核心目标是为时间序列数据提供