在统计建模与数据科学中,广义线性模型(GLM)虽然强大,但仍存在诸如线性假设过强、灵活性不足等局限。广义加性模型(Generalized Additive Models,简称GAM)在此背景下应运而生,它以非参数回归为基础,灵活建模预测变量与响应变量之间的非线性关系。本文将围绕R语言中mgcv包的核心函数gam,深入解析GAM的理论基础、建模语法、参数设置与扩展应用,帮助读者掌握GAM在实际建模中的优势与使用方式。
一、GAM模型的基本原理
在现实世界的数据分析中,变量之间的关系往往不是简单的线性关系。例如,气温与疾病发病率、药物剂量与疗效、收入水平与幸福感等,都可能呈现出复杂的非线性趋势。传统的线性模型(如普通线性回归或广义线性模型)虽然计算效率高、易于解释,但在处理这些非线性关系时往往力不从心。为了解决这一问题,统计学家提出了“广义加性模型”(Generalized Additive Models,简称GAM)。这种模型融合了广义线性模型的框架与非参数平滑技术的灵活性,使