离散数学,最大最小极大极小元,链和反链,全序和良序,函数的定义和性质,满射函数和单射函数

目录

1.偏序关系的元素

最大最小极大极小元 

最小(大)元性质 

极小(大)元性质 

上界和下界 

2.例子 

3.链和反链 

4.全序和良序 

5.函数的定义和性质 

函数的定义 

6.函数的计数 

7.特殊函数 

满射函数和单射函数 

双射函数 

判断下列函数是否是满射,单射,双射 

常数函数和恒等函数 

8.函数的复合 


1.偏序关系的元素

最大最小极大极小元 

4ce6d68934fc4ad6abdf0251cbc59a67.png

24cb246e0fdc4c92ae7524a59252c28f.png

最小(大)元性质 

37b7d861f2fd4e5797a1a0c32232319e.png

极小(大)元性质 

dccbeed7b93d488c920fb0e3ff6c5c6c.png

7ac42deaa1f3433790f37d86a7c44f9c.png

上界和下界 

83fdefdbf3ef40aabb6924879f75123f.png

6797242b3f164e4c95e04ad17c157cce.png

2.例子 

80a4ccfff31e4a63b84a2d5f139efded.png

30bacf6f3bd44925b06dba0c67c7c8b7.png

3.链和反链 

b72649ec6dcd4f1aaf3d8309f229a0bd.png

fcebb5771af249baa4ee4d6080338db4.png

4.全序和良序 

1bcd092104a947c1ae54971147298127.png

ff08810a48e74d688744bc19a1907816.png

0ba17140946641b98dc9ea5fd5557942.png

06432f490b484dd180dab3eed596ec88.png

e4da174406f0456599b6557eace81d74.png

5.函数的定义和性质 

9f3dc980ed5c4a19a90974f042ba119a.png

60e15aa8e2e64795a604cc561a87723d.png

a3ecfe783d9846f5acb7a70ac1a3e499.png

函数的定义 

197bbffb04634102964634a71cef2741.png

7475baeb6f2247c9b42451a713f949fa.png

786609b0944546d09bc27b0d52985a2c.png

5c57e04cf3da4ac78c74af5cec11205f.png

331d3c74cda24997b9c49dea54bf1ee5.png

526b35f8d68c44bfa2cc23f09f873fba.png

6.函数的计数 

eb9b01455c1c47279fc28d1c12565c26.png

87a25857f9394cc6adc28ec16019aa8d.png

d78f45f850ff4bdbb6ca7094a9df8f96.png

231807b1cdb443b7a72d48d252fca31b.png

245268a65cf5408e9c1cefd4da338339.png

7.特殊函数 

a68c499170b24767bff25364b809a9c9.png

满射函数和单射函数 

ea5a04a5fd8048e38fe0683b9bf1275a.png

双射函数 

b5927444eae449e2b6fd9a3301813c49.png

9bb263a542b44759b2fd91deb3337d38.png

判断下列函数是否是满射,单射,双射 

8f42fd0133514446920a490d8ceabb6a.png

2bc0b4f681ac4a018761e4b4ce187f74.png

eb038a19efad4e9a8e304886cdeb076b.png

常数函数和恒等函数 

447121749e8c4eb0b6a7b6e373304122.png

29f1c9f2ee6d43cb9ac0a863a5eda79e.png

8.函数的复合 

d201f77b7f7a42528c0131efa05d4d76.png

b40807a5157746858a1314564885684f.png

7ef5dbfaa9984d2da9b73cd66771d22f.png

a3eeb642b26147caa2faf9f3402832b4.png

fd60c9ded5fe4477901d87ceec4fbe82.png

f0f1dde1688f4f9bb3d7adad35dd5181.png

在网络中的讨论以及学术文献里,极小最小的概念通常出现在偏序集或者更一般的有序集合的研究中。这两个概念虽然听起来相似但有着不同的含义。 ### 极小 (Minimal Element) 在一个给定的非空集合S及其上的偏序关系≤中,素m属于S被称为S的一个极小当且仅当不存在任何其他素s属于S使得$s \leq m$并且$m \neq s$成立。换句话说,在这个特定的关系下没有比它还小的其它成员(除了可能等于自己)。一个集合可以拥有超过一个极小;事实上,只要两个极小之间不可比较,则它们都可以被视为独立的极小。 ### 最小 (Minimum Element) 同样地考虑上面提到的那种情况下的同一个集合S,若存在某个素l也属于此集合,并对于所有的x∈S都有$l ≤ x$成立的话,那么就称作l是整个集合里的唯一最小。这意味着在这个设定好的排序规则之下,没有任何其他的成员能小于或等于这个特别指出的小值了——它是绝对意义上的“最底部”。 从以上描述可以看出主要差异在于: - **唯一性**:最小在整个集合范围内是唯一的,而极小可以在同一集合中有多个。 - **全局对比 vs 局部对比**:要成为最小,必须能够其他所有成员相比较并证明自身是最小的那个;相,成为一个极小只需要保证没有直接较小者即可。 至于应用场景方面, - 在数据库查询优化领域,人们可能会遇到关于如何选择最优索引的问题,这里涉及到的数据结构往往可以用偏序来建模,从而利用极小等概念帮助确定最佳方案。 - 计算机科学中的算法设计也会频繁触及此类理论,比如贪心策略的选择或是动态规划状态转移方程的设计都离不开对这类数学性质的理解。 - 组合数学离散数学也是广泛应用这些概念的地方之一,特别是在处理图论问题时,节点间的优先级排列经常依赖于类似的思想来进行有效求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏箱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值