图论(2)-路径和回路
-
在有向图中,从顶点 v 0 v_0 v0到顶点 v n v_n vn的一条路径是图中的边的序列, 其中每一条边的终点是下一条边的起点。
-
一条路径中, 如果同一条边不出现两次, 则称此路径是简单路径。
-
一条路径中,如果同一顶点不出现两次, 则称此路径是基本路径(或叫链)。
-
如果路径的始点 v 0 v_0 v0和终点 v n v_n vn相重合, 即 v 0 v_0 v0= v n v_n vn , 则此路径称为回路,
-
没有相同边的回路称为简单回路, 通过各顶点 不超过一次的回路称为基本回路。
-
路径P中所含边的条数称为路径P的长度。
-
在一个具有n个结点的简单图中,如果从v1到 v2有一条路径, 则从v1到v2有一条长度不大于n-1的基本路径。
-
在一个具有n个结点的简单图中, 如果经v1有 一条简单回路,则经v1有一条长度不超过n的基本回路。
-
连通图: 在无向图G中, 如果任两结点间存在路径, 则称图G是连通的;
-
如果G的子图G′是连通的, 没有包含G′的更大的子图G″是连通的, 则称G′是G的连通分图(简称分图)。
-
有向图的连通性:
- 在有向图中, 如果在任两结点偶对中, 至少从一个结点到另一个结点是可达的, 则称图G是单向连通的;
- 如果在任两结点偶对中, 两结点都互相可达,则称图G是强连通的;
- 如果它的底图(去掉所有箭头)是连通的,则称图G是弱连通的。
-
在有向图G中, G′是G的子图, 若G′是强连通 的(单向连通的, 弱连通的), 没有包含G′的更大子图G″是强连通 的(单向连通的, 弱连通的), 则称G′是G的强分图(单向分图, 弱 分图)。
上图中的强联通分量是5(123, 4, 5, 6, 78)个, 单向为2(12345, 65, 78)个, 弱为2个