题目描述
在一条无限长的路上,有一排无限长的路灯,编号为 1,2,3,4,…1,2,3,4,…。
每一盏灯只有两种可能的状态,开或者关。如果按一下某一盏灯的开关,那么这盏灯的状态将发生改变。如果原来是开,将变成关。如果原来是关,将变成开。
在刚开始的时候,所有的灯都是关的。小明每次可以进行如下的操作:
指定两个数,�,�a,t(�a 为实数,�t 为正整数)。将编号为 ⌊�⌋,⌊2×�⌋,⌊3×�⌋,…,⌊�×�⌋⌊a⌋,⌊2×a⌋,⌊3×a⌋,…,⌊t×a⌋ 的灯的开关各按一次。其中 ⌊�⌋⌊k⌋ 表示实数 �k 的整数部分。
在小明进行了 �n 次操作后,小明突然发现,这个时候只有一盏灯是开的,小明很想知道这盏灯的编号,可是这盏灯离小明太远了,小明看不清编号是多少。
幸好,小明还记得之前的 �n 次操作。于是小明找到了你,你能帮他计算出这盏开着的灯的编号吗?
输入格式
第一行一个正整数 �n,表示 �n 次操作。
接下来有 �n 行,每行两个数,��,��ai,ti。其中 ��ai 是实数,小数点后一定有 66 位,��ti 是正整数。
输出格式
仅一个正整数,那盏开着的灯的编号。
输入输出样例
输入 #1复制
3 1.618034 13 2.618034 7 1.000000 21
输出 #1复制
20
说明/提示
记 �=∑�=1���=�1+�2+�3+⋯+��T=i=1∑nti=t1+t2+t3+⋯+tn。
- 对于 30%30% 的数据,满足 �≤1000T≤1000;
- 对于 80%80% 的数据,满足 �≤200000T≤200000;
- 对于 100%100% 的数据,满足 �≤2000000T≤2000000;
- 对于 100%100% 的数据,满足 �≤5000n≤5000,1≤��<10001≤ai<1000,1≤��≤�1≤ti≤T。
数据保证,在经过 �n 次操作后,有且只有一盏灯是开的,不必判错。而且对于所有的 �i 来说,��×��ti×ai 的最大值不超过 20000002000000。
#include<bits/stdc++.h>
using namespace std;
int a[2000001],n;
double x,y;
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>x>>y;
for(double j=1;j<=y;++j){
if(a[int(j*x)]==0) a[int(j*x)]=1;
else a[int(j*x)]=0;
}
}
for(int i=1;;i++){
if(a[i]==1){
cout<<i;
break;
}
}
return 0;
}