p1161

文章讲述了在一个无限长的道路上,通过一系列的灯开关操作,最后只有一盏灯亮着。给定操作次数和每个操作的具体细节,问题是如何确定这唯一亮灯的编号。
摘要由CSDN通过智能技术生成

题目描述

在一条无限长的路上,有一排无限长的路灯,编号为 1,2,3,4,…1,2,3,4,…。

每一盏灯只有两种可能的状态,开或者关。如果按一下某一盏灯的开关,那么这盏灯的状态将发生改变。如果原来是开,将变成关。如果原来是关,将变成开。

在刚开始的时候,所有的灯都是关的。小明每次可以进行如下的操作:

指定两个数,�,�a,t(�a 为实数,�t 为正整数)。将编号为 ⌊�⌋,⌊2×�⌋,⌊3×�⌋,…,⌊�×�⌋⌊a⌋,⌊2×a⌋,⌊3×a⌋,…,⌊t×a⌋ 的灯的开关各按一次。其中 ⌊�⌋⌊k⌋ 表示实数 �k 的整数部分。

在小明进行了 �n 次操作后,小明突然发现,这个时候只有一盏灯是开的,小明很想知道这盏灯的编号,可是这盏灯离小明太远了,小明看不清编号是多少。

幸好,小明还记得之前的 �n 次操作。于是小明找到了你,你能帮他计算出这盏开着的灯的编号吗?

输入格式

第一行一个正整数 �n,表示 �n 次操作。

接下来有 �n 行,每行两个数,��,��ai​,ti​。其中 ��ai​ 是实数,小数点后一定有 66 位,��ti​ 是正整数。

输出格式

仅一个正整数,那盏开着的灯的编号。

输入输出样例

输入 #1复制

3
1.618034 13
2.618034 7
1.000000 21

输出 #1复制

20

说明/提示

记 �=∑�=1���=�1+�2+�3+⋯+��T=i=1∑n​ti​=t1​+t2​+t3​+⋯+tn​。

  • 对于 30%30% 的数据,满足 �≤1000T≤1000;
  • 对于 80%80% 的数据,满足 �≤200000T≤200000;
  • 对于 100%100% 的数据,满足 �≤2000000T≤2000000;
  • 对于 100%100% 的数据,满足 �≤5000n≤5000,1≤��<10001≤ai​<1000,1≤��≤�1≤ti​≤T。

数据保证,在经过 �n 次操作后,有且只有一盏灯是开的,不必判错。而且对于所有的 �i 来说,��×��ti​×ai​ 的最大值不超过 20000002000000。

#include<bits/stdc++.h>
using namespace std;
int a[2000001],n;
double x,y;
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>x>>y;
		for(double j=1;j<=y;++j){
			if(a[int(j*x)]==0) a[int(j*x)]=1;
			else a[int(j*x)]=0;
		}
	}
	for(int i=1;;i++){
		if(a[i]==1){
			cout<<i;
			break;
		}
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值