小说推文、抄小说、抄书三者有什么区别?注意不要被上当受骗!

小说推文跟抄小说是一个性质,都是用复制小说做成视频的形式,帮小说平台拉新用户、新会员,以此来拿到平台给的提成,也就是佣金。

但是抄书的性质完全跟推文不一样!

1、什么叫小说推文/抄小说?

小说推文准确说是博主帮平台拉新用户、拉回老用户、拉会员,来拿提成;比如知乎,小说推文博主帮知乎拉会员,会员9.9元、博主拉到了一个就能得到7块钱佣金。

比如番茄小说,博主帮番茄小说平台拉到新用户,可以拿到8块钱佣金!

最高的像抖音故事推文,拉会员模式可以拿到12元一单的佣金!

现在小说推文的单价在7-12元,这个佣金不算低了,选择的平台也多,都是给知名平台官方干活,有一定的保障,只要肯努力、肯花心思运营下账号,就可以用这个赚钱当副业、甚至全职。

推文适合大学生、宝妈、上班做副业、想全职自媒体的伙伴!不适合非常非常忙的人,因为找小说、剪辑也需要一点时间成本。

小说推文发展到现在已经成为了一个项目,有知乎、番茄小说、番茄畅听、掌阅、书旗小说、七猫小说、UC故事、抖音故事、起点、飞卢、夸克、今日头条等一些知名的平台推出的项目;

只要小程序或者授权团队拿到授权,就可以直接推广小说,很多团队都是公司化运营,小程序也是能看到小说平台的官方活动奖励,提现也可以自提,不用担心被骗。

2、为什么说抄小说跟抄书是不一样的?

如果说抄小说就是小说推文,那么抄书就是赚取抖音中视频的钱了。

抄书是把一篇好看、励志的复制出来,放到风景视频上,做成横屏视频,发布到抖音,赚抖音、西瓜视频、今日头条三个平台的中视频播放量收益。

赚取播放量的收益是不稳定的,一但视频没爆或者播放量没几个,收益就几分钱、几毛钱,一顿操作下来什么都拿不到,能赚到抄书钱的是哪种人呢?
是已经把抖音账号做起来了的博主!这种博主发出来的播放量才高,可以赚取抖音播放量的收益,可是想要做到这一步很难!尤其是对新人来说真的非常非常难;

不过中视频达到很高的播放量确实可以赚钱,可做出高播放量视频不容易,对比下来也没有小说推文稳定。

现在抖音就有很多教大家抄书赚钱的,想想,如果真的有这么赚钱,为什么自己不偷摸赚?

而是发布出来让你们做,让同行多一个竞争力?错!大错特错!真有这么好心吗?

所以,小说推文抄小说跟抄书没有任何关系,也不等于抄书,抄书收益是不稳定的,想要做起来困难度非常高,小说推文的话,直接零粉丝就可以做,而且很快可以做出订单量,看到实实在在的佣金到手。

3、可不可以做小说推文的同时也做中视频?

不可以!

中视频有三个要求达到才能做!

(1)三个视频达到17000播放量

(2)横屏视频

(3)原创

小说推文视频刚发布有流量扶持,达到17000播放量很简单,也可以做成横屏推文,但横屏不代表就是中视频了,因为原创这点小说推文过不了审。

为什么呢?

小说推文的操作过程是复制小说平台里的小说,来制作视频发布,光是这一点就不是原创了,小说是平台作者里面著作的,不属于自己原创因此无法过抖音中视频审核。

### 将 DeepSeek 部署至本地系统作为智能客服解决方案 #### 评估需求与准备环境 考虑到 DeepSeek-V3 荐部署单元相对较大的特点[^1],对于计划将其应用于智能客服场景的企业而言,需提前规划好足够的计算资源来支持模型运行。此外,虽然当前版本已经在效率上有显著提升,但仍存在优化空间。 针对具体实施步骤: #### 获取并安装依赖库 首先需要获取官方提供的部署包或源码仓库链接。通常情况下,这类大型预训练模型会附带详细的档说明以及必要的脚本件帮助完成初始化设置工作。假设已获得合法授权访问权限,则可按照如下方式操作: ```bash git clone https://github.com/deepseek-official/deploy.git cd deploy pip install -r requirements.txt ``` 以上命令用于克隆指定 GitHub 项目地址下的最新稳定分支,并安装 Python 虚拟环境中所需的第三方模块列表。 #### 下载预训练权重参数 接着要下载经过充分调优后的网络结构及其对应的浮点数形式的权值矩阵。这部分数据量可能较为庞大,建议在网络状况良好时执行此步骤: ```bash python download_weights.py --model_name=DeepSeek-V3 ``` 这里假定 `download_weights.py` 是由开发者提供用来简化用户获取过程的一个辅助工具;实际名称可能会有所不同,请参照官方指引调整相应选项。 #### 构建服务接口层 为了让前端应用能够顺利对接后端逻辑部分,还需搭建 RESTful API 或 gRPC 类型的服务框架以便接收来自外部系统的请求消息并向其返回处理结果。下面给出一个简易 Flask Web Server 的例子供参考: ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained('path/to/tokenizer') model = AutoModelForCausalLM.from_pretrained('path/to/model').to(device) @app.route('/api/chat', methods=['POST']) def chat(): user_input = request.json.get('message') inputs = tokenizer(user_input, return_tensors="pt").input_ids.to(device) outputs = model.generate(inputs, max_length=50, num_return_sequences=1) response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response": response_text}) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ``` 这段代码片段展示了如何利用 Hugging Face 提供的 Transformers 库加载自定义路径下保存好的 tokenzier 和 LM 模型实例对象,并创建了一个 HTTP POST 方法监听 `/api/chat` URL 地址上的交互事件,从而实现基本的字对话交流功能。 #### 测试验证效果 最后一步就是进行全面的功能性和稳定性测试以确认整个流程无误之后再正式上线投入使用。可以通过编写自动化测试案例集或者手动模拟真实业务场景来进行质量保证活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值