最小子列和问题

本文介绍了如何通过不同的方法优化求解数组中最大子序列和的问题,从初始的O(n^3)复杂度到动态规划的Kadane算法的O(n),展示了分而治之和动态规划在解决此类问题中的应用。
摘要由CSDN通过智能技术生成

前言

通过对最小子列和问题四种实现手段浅涉数据结构中关于复杂度知识点的理解


一、题目描述

二、设计步骤

对于该问题,最基本的思路应该是:将所有可能出现的{ i , j }组合产生的结果全部扫描一遍,比较得出最大值。该算法需要三个for循环嵌套语句,复杂度为O(n^3)。

int MaxSubseqSuml(int A[],int N)
{
	int ThisSum,MaxSum = 0;
	int i,j,k;
	
	for(i = 0;i < N;i++)
	{
		for(j = i;j < N;j++)
		{
			ThisSum = 0;
			for(k = i;k <= j;k++)
			{
				ThisSum += A[k];
				if(ThisSum > MaxSum)
					MaxSum = ThisSum;
			}
		}
	}
	return MaxSum;
}

如果改变ThisSum的归零位置,并舍去对从同一个 i 开始的连续元素的重复累加过程,可以减少一层循环,复杂度为O(n^2)。

int MaxSubseqSuml(int A[],int N)
{
	int ThisSum,MaxSum = 0;
	int i,j;
	
	for(i = 0;i < N;i++)
	{
		ThisSum = 0;
		for(j = i;j < N;j++)
		{
			ThisSum += A[j];
			if(ThisSum > MaxSum)
				MaxSum = ThisSum;
		}
	}
	return MaxSum;
}

 若采用分而治之的思路,将 A[] 分为两个子列分别求解,同时不断递归,结合线性表,可以设计出T(n) = O(nlogn)的算法:

int Max3 ( int A, int B, int C ) {
	return (A > B) ? (A > C ? A : C) : (B > C ? B : C);
}

int DivideAndConquer (int List[], int left, int right) 
{
	int MaxLeftSum, MaxRightSum;
	int MaxLeftBorderSum, MaxRightBorderSum;
	
	int LeftBorderSum, RightBorderSum;
	int center, i;
	
	if ( left == right ) {
		if ( List[left] > 0 )	return List[left];
		else return 0;
	}

	center = ( left + right ) / 2;
	MaxLeftSum = DivideAndConquer ( List, left, center );
	MaxRightSum = DivideAndConquer ( List, center+1, right );
	
	MaxLeftBorderSum = 0;	LeftBorderSum = 0;
	for ( i = center; i >= left; i-- ) {
		LeftBorderSum += List[i];
		if ( LeftBorderSum > MaxLeftBorderSum )
			MaxLeftBorderSum = LeftBorderSum;
	}
	
	MaxRightBorderSum = 0;	RightBorderSum = 0;
	for ( i = center+1; i <= right; i++ ) {
		RightBorderSum += List[i];
		if ( RightBorderSum > MaxRightBorderSum )
			MaxRightBorderSum = RightBorderSum;
	}

	return Max3 ( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}

int MaxSubseqSum3 ( int List[], int N ) {
	return DivideAndConquer ( List, 0, N-1 );
}

 1984年,Jay Kadane运用动态规划的思想,针对该问题提出了更快的算法,即Kadane算法。从数学角度优化了该问题的解答思路,T(n) = O(n)

int MaxSubseqSuml(int A[],int N)
{
	int ThisSum,MaxSum;
	int i;
	
	MaxSum = 0;
	ThisSum = 0;
	for(i = 0;i < N;i++)
	{
		ThisSum += A[i];
		if(ThisSum > MaxSum)
			MaxSum = ThisSum;
		else if(MaxSum < 0)
			ThisSum = 0;
	}
	return MaxSum;
}

该算法的优点不仅在于复杂度小,同时使得MaxSum中存储的值始终为已处理序列部分的解,故又被称为在线处理算法。 


例图及思路来源于浙江大学《数据结构》MOOC,该系列文章为题主学习课程的总结笔记

  • 9
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值