监督学习与非监督学习:解决机器学习的两大核心方法

机器学习作为人工智能的重要分支,已经在各个领域取得了巨大的成功。监督学习和非监督学习作为机器学习中的两大核心方法,对于模式识别、数据挖掘、自然语言处理等领域的研究具有重要意义。本文将详细介绍监督学习和非监督学习的基本概念、原理以及应用,并探讨两者的异同。

目录

监督学习:机器学习的启蒙导师

回归问题

介绍

举例说明:

 分类问题

简介

举例说明:

无监督学习

聚类(clustering)问题:

降维问题

关联规则学习

密度估计


 

监督学习:机器学习的启蒙导师

在人工智能的浩瀚宇宙中,监督学习如同一位智慧的启蒙导师,它通过教授机器从带有标签的数据中学习规律,引领我们走向更加智能的未来。作为机器学习领域的重要分支,监督学习无疑占据了举足轻重的地位。

那么,什么是监督学习呢?简单来说,监督学习是一种通过输入带有标签的训练数据来训练模型的机器学习方法。在这个过程中,算法会学习输入数据与相应输出标签之间的关系,从而对新的未标记数据进行预测。这就像是老师在教授学生时,通过给出问题和正确答案来引导学生掌握解题技巧。

让我们以一个具体的例子来说明。假设我们要构建一个邮件分类器,它可以将收到的邮件分为“垃圾邮件”和“非垃圾邮件”。在监督学习中,我们会准备一组已经标记好的邮件作为训练数据。这些邮件已经被标记为“垃圾邮件”或“非垃圾邮件”。然后,我们使用这些数据来训练一个分类算法,比如决策树、支持向量机或神经网络等。训练完成后,这个分类器就能够对新的未标记邮件进行分类了。

监督学习的关键步骤包括数据预处理、特征选择、模型训练和模型评估等。其中,数据预处理是指对原始数据进行清洗、转换和标准化等操作,以便于算法更好地理解;特征选择则涉及到从众多特征中挑选出对模型性能影响最大的特征;模型训练是指使用训练数据来调整模型参数,使其能够拟合数据;而模型评估则是通过测试数据来检验模型的性能如何。


回归问题

介绍

回归问题,作为机器学习三大基本模型之一,主要涉及对变量间关系的建模与分析,以预测连续值输出。具体来说:

  • 求解流程:回归问题的求解通常包括数据准备、模型选择、模型训练和模型评估等步骤。在数据准备阶段,需要收集和清洗数据,选择合适的特征。模型选择阶段则是确定使用线性回归、决策树回归、支持向量回归还是其他类型的回归模型。训练阶段涉及使用算法调整模型参数以最好地拟合数据。最后,在评估阶段,使用如均方误差(MSE)或R²分数等指标来衡量模型的性能。
  • 常用模型:回归问题常用的模型包括线性回归、岭回归、套索回归、弹性网络回归、支持向量回归、决策树回归和随机森林回归等。每种模型都有其特定的假设和适用场景。
  • 损失函数:回归问题中常用的损失函数是平方损失(square loss),它衡量的是预测值与实际值之间差的平方。这个损失函数有助于捕捉预测误差的大小,并指导模型优化。
  • 评价指标:评估回归模型的性能时,常用的指标包括均方误差(MSE)、均方根误差(RMSE)、平均绝对误差(MAE)和R²分数等。这些指标可以帮助我们了解模型的预测准确度和拟合优度。
  • d7ba502d1d2540fb97c2b91b03abc233.png
  • 应用场景:回归问题广泛应用于金融、经济、社会科学、医学和工程等领域。例如,在金融领域,可以使用回归模型来预测股票价格;在经济学中,可以用来预测未来的经济趋势;在医学研究中,可以用来分析药物剂量对病情的影响。

举例说明:

97e0b1a4b15b4bbaaab5ba1437a7bad3.png

预测房价
假设我们想要预测某个城市的房价。我们可以收集到该城市过去几年的房价数据,以及一些相关的因素,比如房屋的面积、房龄、所处区域、楼层等。我们可以使用这些数据建立一条最佳拟合直线,从而对未来的房价进行预测。
在这个例子中,自变量可以包括面积、房龄、所处区域等,因变量是房价。
我们可以通过最小二乘法来估计截距和斜率的值,从而得到一条最佳拟合直线。这条直线可以用来预测未来的房价,也可以用来分析不同因素对房价的影响。

总的来说,回归问题在机器学习中扮演着至关重要的角色,它通过建立输入变量和连续输出变量之间的数学关系,帮助我们进行准确的预测和分析。


 分类问题

简介

分类问题是监督学习中的一个重要任务,它的目标是根据输入的特征将数据分配到预先定义的类别中。以下是具体介绍:

  1. 问题定义:分类问题的目的是构建一个模型,该模型能够将输入数据映射到输出类别。这些类别是预先定义好的,并且通常是互斥的,即每个实例只能属于一个类别。

  2. 样本分类:将正样本预测正样本(True Positive, TP)将正样本预测为负样本(False Negative, FN)将负类样本预测为正样本(False Positive, FP)将负类样本预测为负样本(True Negative, TN

  3. 应用场景:分类问题广泛应用于各个领域,包括但不限于邮件过滤、图像识别、语音识别、医疗诊断、客户流失预测等。

  4. 模型选择:常用的分类模型包括逻辑回归、决策树、支持向量机、随机森林、神经网络等。模型的选择取决于数据的特性和问题的复杂性。

  5. 评估指标:分类模型的性能通常通过准确率、精确率、召回率、F1分数等指标来评估。这些指标反映了模型在不同方面的性能,如正确分类的比例、对正类的识别能力等。

  6. 挑战与解决方案:分类问题面临的挑战包括类别不平衡、特征选择、模型泛化能力等。解决这些问题的方法包括重采样、特征工程、正则化等技术。

举例说明:

bd378bf2022746ca87a5aba234ff5775.png

  把精确率(Precision)和召回率(Recall)之间的关系用图来表达,就是上面的PR曲线:

           平衡点(BEP)P=R

AP(Average Precision):PR曲线下的面积。

通常来说一个越好的分类器,AP值越高

mAP是多个类别AP的平均值。这个mean的意思是对每个类的AP再求平均,得到的就是mAP的值,mAP的大小一定在[0,1]区间,越大越好。该指标是目标检测算法中最重要的一个。 

总的来说,分类问题是机器学习中的一个核心任务,它要求模型能够根据输入特征对数据进行准确的分类。选择合适的模型和评估指标,以及处理数据中的挑战,对于构建一个高性能的分类器至关重要。


监督学习是机器学习领域的基石之一。它通过从带有标签的数据中学习规律,为我们提供了一种强大的工具来解决各种复杂问题。无论是在学术研究还是实际应用中,掌握监督学习的原理和技术都是非常有价值的。 

无监督学习

无监督学习是机器学习中的一种方法,它不依赖于标记数据来训练模型。这种学习方式的核心在于发现数据中的隐藏结构或者模式。在无监督学习中,数据集𝑥𝑖𝑖=1𝑁{x^((i) ) }_(i=1)^N中只有模型的输入,而并不提供正确的输出𝑦𝑖y^((i) )作为监督信号。数据中不含有“目标”的机器学习问题通常被为无监督学习(unsupervised learning)

聚类(clustering)问题:

聚类问题,作为无监督学习的一个重要分支,**涉及到将数据集中的对象划分为若干个组或“簇”,使得同一个簇中的对象之间具有较高的相似度,而不同簇中的对象相似度较低**。以下是对聚类问题的详细介绍:

1、聚类算法的分类:

  •     基于划分的方法:如K-means、K-medoids和GMM(高斯混合模型)。这些方法通过优化目 标函数来划分数据,通常适用于球形簇结构的数据分布。
  •    基于层次的方法:如层次聚类,它们不需要预先指定簇的数量,而是通过逐层合并或分裂数据对象来构建层次结构的簇。
  •    基于密度的方法:如DBSCAN,这类方法能够识别任意形状的簇,并且可以发现噪声数据。
  •    基于网格的方法:它们通过将数据空间划分为网格单元来简化聚类过程,加快了聚类速度。
  •    基于模型的方法:假设数据是由一系列的概率模型生成的,每个模型对应一个簇。

2、聚类算法的选择:选择合适的聚类算法通常取决于数据的特性和分析任务的需求。例如,K-means算法简单快速,适合处理大数据集;而DBSCAN能够处理噪声和不规则形状的簇。

3、 聚类算法的应用:聚类分析在多个领域都有广泛的应用,如市场细分、社交网络分析、图像分割、基因表达分析等。在商业领域,聚类可以帮助市场分析师识别不同的客户群体及其购买模式。

 4、聚类结果的评估:由于聚类问题通常没有明确的标签,因此评估聚类结果的质量是一个挑战。常用的评估方法包括轮廓系数、戴维森-伯尔丁指数等

聚类是一种强大的数据分析工具,它能够在没有先验知识的情况下揭示数据的内在结构。了解不同的聚类算法及其适用场景,对于进行有效的数据分析至关重要。

降维问题

降维是一种重要的数据预处理技术,它通过减少数据集的特征数量来简化模型结构,提高计算效率,同时尽量保留原始数据的主要信息。

1. 降维方法分类:

  •     线性降维方法:这些方法假设数据可以在线性空间中进行有效表示。主成分分析(PCA)是一种广泛使用的线性降维技术,它通过正交变换将数据投影到由方差最大的方向定义的新坐标系上。线性判别分析(LDA)也是一种常用的线性降维方法,它在保证数据类间分离度最大化的同时进行降维。
  •    非线性降维方法:当数据的分布不适合用线性模型描述时,非线性降维方法更为合适。等距映射(Isomap)、局部线性嵌入(LLE)和t-分布邻域嵌入(t-SNE)属于这一类。

2. 降维的应用:

  •    机器学习与深度学习:在这些领域中,降维有助于提高模型的训练速度和泛化能力。例如,在深度学习中,卷积和池化操作本质上是一种降维过程。
  •    运筹学数学规划:在处理大规模优化问题时,降维可以简化问题结构,降低计算复杂度。

3. 优缺点:

  •    优点:降维可以提高数据处理的效率,减少存储空间的需求,同时有助于数据的可视化和理解。它还可以减少过拟合的风险,提高模型的泛化能力。
  •    缺点:降维可能会导致一些信息的丢失,尤其是当原始数据的结构非常复杂时。因此,选择合适的降维方法对于保持数据的重要特征至关重要。

降维是数据分析和机器学习中的一个重要环节,它通过减少数据的复杂性来帮助我们更好地理解和使用数据。


关联规则学习

关联规则学习是一种数据挖掘技术,用于发现大型数据库中变量之间的有趣关系**。它主要依赖于数据集中的频繁模式来生成规则,这些规则可以帮助我们理解不同项目之间的关系。

  1. 概念和目标:关联规则学习的核心是从数据集中挖掘出频繁共现的项目集合,并基于这些集合生成规则。这些规则通常表示为“如果...那么...”的形式,例如,“如果顾客购买了尿布,那么他们也可能购买啤酒”。
  2. 评价指标:衡量关联规则的强度通常使用支持度(support)、置信度(confidence)和提升度(lift)等指标。支持度表示规则在数据集中出现的频率,置信度表示在规则前件成立的情况下后件出现的概率,而提升度则表示规则前后件同时出现的概率与它们独立出现概率的比值。
  3. 常用算法:Apriori算法是关联规则学习中的经典算法,它通过逐层搜索频繁项集并生成规则。FP-growth是另一种算法,它使用一种称为频繁模式树的数据结构来高效地发现频繁项集。
  4. 优化方法:为了提高算法的效率,可以使用A-Priori原则来剪枝,即排除那些不可能成为频繁项集的候选项。Hash Tree也是一种优化技术,它可以快速计算项集的支持度。
  5. 应用领域:关联规则学习广泛应用于市场篮子分析、交叉销售、商品推荐、医疗诊断等领域。在市场篮子分析中,可以通过关联规则来发现顾客购物时的商品组合模式,从而指导商家的营销策略。
  6. 实现工具:Python是一种常用的编程语言,可以用来实现关联规则学习算法。mlxtend库提供了Apriori算法的实现,方便了关联规则学习的应用和实验。

总的来说,关联规则学习是一种强大的数据分析工具,它通过发现数据中的有趣模式和规则,帮助我们理解不同变量之间的关系,并为决策提供支持。

密度估计

密度估计是一种用于学习数据分布的方法,它属于无监督学习的范畴。

1. 概念和分类:

  • 密度估计是指从数据样本中估计概率密度函数的过程。它可以帮助我们理解数据的分布特性,对于数据分析和模型建立具有重要意义。
  • 密度估计方法主要分为参数化方法和非参数化方法。参数化方法假设数据服从某种已知的概率分布,如高斯混合模型;而非参数化方法不假设特定的分布形式,如核密度估计。

2. 常用技术:

  • 直方图:是最简单的密度估计方法,通过将数据分桶并计算每个桶中的数据量来估计密度。
  • 核密度估计(KDE):是一种非参数估计方法,它使用核函数来平滑数据,从而得到连续的密度曲线。选择合适的核函数和带宽参数对于KDE的性能至关重要。
  • 高斯混合模型(GMM):是一种参数化方法,它假设数据由多个高斯分布组成,每个分布称为一个组件或簇。

3. 应用领域:

密度估计在无监督学习、特征工程和数据建模等领域都有广泛的应用。例如,在金融领域,可以通过密度估计来评估投资组合的风险;在生物信息学中,可以用它来分析基因表达数据。

4. 实现工具:
在Python中,可以使用scikit-learn库来实现密度估计。该库提供了多种密度估计算法的实现,包括KDE和GMM等。

总的来说,密度估计是一种强大的数据分析工具,它能够帮助我们从数据中提取出有价值的信息,为进一步的数据分析和模型建立提供基础。


此外,与监督学习相比,无监督学习不需要标签数据,这使得它在探索未知数据结构时更加灵活。然而,由于缺乏明确的目标或反馈,无监督学习可能需要更多的数据和先验知识来引导学习过程。本文对机器学习基础知识进行了介绍,这部分是理解后续高级操作的基础。

监督学习与非监督学习主要针对数据集定义。有监督数据集需要人工标注,成本较为昂贵,但是在训练模型时往往能够保障效果。无监督数据集一般不需要过多人工操作,可以通过爬虫等方式自动大量获得。

 

希望这篇博客能够帮助你更好地理解监督学习和无监督学习的基本概念和应用方法

 

  • 20
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值