AIGC检测率太高?4种技巧教你降低论文AI检测

近期知网出了新的检测AI生成论文功能,如果论文的AI检测率超过30%,很可能会被判定为AI代写,从而无法参加答辩,影响毕业。

所以如果你用AI帮忙写了论文,就一定要在交稿之前做一下AIGC辅写的检测。

那么如何有效降低论文的AI检测率呢?我找到几种有效大降低AI浓度的方法,尤其最后一种方法,让你既能无痛用AI写论文,又能避免AI检测率过高的风险!

1.删除大法

如果你的字数够,那么就删掉AIGC内容,这是最快的方法!

2.词语替换

建议使用长句代替短句,同一个句子里重复的词语进行同义词替换。

3.删字扩写

如果涉及到专业词汇名词解释,怎么都降不下去,可以吧无关紧要的名词解释删掉,能扩写的地方扩写。

如果还是AIGC率还是降不下来,不如让魔法来对付魔法,试一试专业的【笔灵降AI检测率工具】~

https://ibiling.cn/paper-pass?from=csdn

7379a63d01e8fc20cabaadae06d47716.jpeg

这里我亲自为大家试了一下降AI效果,AIGC率直接从72%降到了15.5%,肉眼可见的靠谱。

c2191c5383530605b6ad6e79af98c10b.jpeg

cc54f887a8cfb60e6930fadb39baedfa.jpeg

我们再来看一看内容细节,同样的章节,降AI前后意思没变,但是表述发生了翻天覆地的变化,通过改变句子结构、替换用词,使内容更贴近了人类撰写,高疑似AI段落在第二次检测时未被识别出来。

f2a2895556b6f4ebe633782a04734cb7.jpeg

e3dcf2ace64d2181e299dcd9c08de3cc.jpeg

人工修改总是耗时又耗力的。比起一个字一个字的修改,不如直接扔给专业工具,让魔法来打败魔法,解放你的双手和饱受查重折磨的心灵。心动不如行动,还在犹豫什么?冲就完事了!

03-16
### 如何优化AIGC降低成本或提高效 #### 1. 数据集质量与规模的优化 高质量的数据对于训练高效的AIGC模型至关重要。可以通过清洗数据、标注更精确的数据标签以及增加多样化的样本,来减少模型训练所需的迭代次数,从而降低计算资源消耗[^4]。 #### 2. 使用预训练模型 采用已经经过大规模语料库训练过的预训练模型作为基础,再针对特定应用场景进行微调(Fine-tuning),这样不仅可以缩短训练时间,还能显著减少硬件资源需求和能源开销。 #### 3. 模型压缩技术的应用 通过剪枝(Pruning)、量化(Quantization)等方法对大型神经网络进行瘦身处理,在不明显牺牲精度的前提下减小模型体积并加快推理速度,进而达到节约部署费用的目的。 ```python import tensorflow as tf # 加载原始模型 model = tf.keras.models.load_model('original_large_model.h5') # 应用量化感知训练 converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.optimizations = [tf.lite.Optimize.DEFAULT] quantized_tflite_model = converter.convert() with open('optimized_quantized_model.tflite', 'wb') as f: f.write(quantized_tflite_model) ``` #### 4. 自动化工具链构建 建立完整的自动化工作流,从需求分析到最终产品交付全程覆盖,减少人工干预环节带来的不确定性因素影响整体进度安排;同时引入持续集成/持续交付(CI/CD),确保每次改动都能及时反馈测试结果以便快速修正错误[^1]。 #### 5. 资源调度策略改进 合理规划服务器集群内的任务分配情况,充分利用闲置时间段执行批量运算操作;另外考虑多租户共享模式下按需购买弹性云服务实例而非长期租赁固定规格机器的方式控制资本支出增长幅度[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值