知网AIGC检测再度升级!用ChatGPT学术应用辅助AI率直接降到9%,亲测有效(附技巧+指令)

最近有不少同仁跟我说,去知网检测论文,查重是过了,但AI率却高的离谱。尤其是论文明明是自己写的,只不过借用了AI的辅助,结果检测报告一出来直接红了一大片。其实我特别理解,毕竟现在大家写论文都想高效点,但又小心翼翼不敢冒险。但其实我想说的是,不是不能用AI,就算是你自己写出来的东西,你放到知网检测,AI率也一样会高。掌握技巧、用对方法这才是最关键的。

上图的那位同仁也是用了我的方法,同样的AI辅助,AI率直接降到了9.9%。今天这期内容,我就先带大家了解知网检测升级之后的一些特点,

### AIGC 检测原理和技术细节 #### 高质量文献大数据资源基础 同方推出的“AIGC检测服务系统”依赖于高质量文献的大数据资源作为支撑。这些丰富的文献资料提供了广泛的内容样本,使得机器学习模型能够从中提取特征并训练出高效的检测算法[^2]。 #### 识增强AIGC检测技术 该系统引入了“识增强AIGC检测技术”。这项技术创新在于结合了传统自然语言处理方法与深度学习框架下的新进展,通过融合外部识图谱来提升对于AI生成内容的理解力和辨析度。具体来说,在分析一段文字时不仅仅依靠语法结构或词汇频等表面特性,还会考虑语义层面的信息以及上下文逻辑关系,从而实现更为精准的判断。 #### 多种检测算法的应用 为了提高准确性,“AIGC检测服务系统”采用了多种不同的检测算法协同工作的方式来进行综合评估。这其中包括但不限于: - **风格一致性检查**:对比作者已发表作品之间的作风格是否存在显著变化; - **异常模式识别**:寻找不符合人类正常作习惯的地方,比如过高的复杂句比例或者是不合理的重复现象; - **跨域关联验证**:利用多源异构数据库间的数据交换机制完成对疑似片段出处的追溯查询。 以上提到的各种策略共同作用下可以有效低误报,并且扩大覆盖范围至不同类型的大型预训练语言模型所创造出来的文本形式。 ```python def detect_aigc(text, model_library): """ 使用多个检测器组合方式来判定给定文本是否由人工智能生成 参数: text (str): 待检测的目标字符串 model_library (list of models): 已经加载好的各种用于比较的基础模型列表 返回值: bool: 如果被认为是AI创作返回True; 否则False. """ style_consistency = check_style_similarity(text, author_profile) anomaly_patterns = find_unusual_writing_features(text) cross_domain_links = verify_source_origin(text) final_decision = combine_results(style_consistency, anomaly_patterns, cross_domain_links) return final_decision ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智写AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值