毕业设计:基于机器学习的网络漏洞攻击检测系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 自编码器

2.2 特征提取方法

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于机器学习的网络漏洞攻击检测系统 

设计思路

一、课题背景与意义

        恶意流量识别是网络安全领域中一项重要的任务,随着网络攻击的不断增加和演化,对恶意流量进行准确分类和及时识别变得至关重要。传统的基于规则和特征的方法在面对复杂多变的恶意攻击时往往表现不佳,因此需要引入更高效、自适应的技术来应对这一挑战。深度学习技术的发展为恶意流量识别提供了新的机会,通过利用深度神经网络的强大表征学习能力,可以从大规模的网络流量数据中提取潜在特征,实现更准确的分类和识别。

二、算法理论原理

2.1 自编码器

        自编码器是一种神经网络,它试图通过编码和解码过程对输入数据进行重构。编码过程将输入数据映射到隐藏层,得到输入数据的特征表示,可以用函数$h = f(x)$表示,其中$h$是隐藏层的表示。解码过程将隐藏层的表示解码为重构结果,可以用函数$r = g(h)$表示。编码和解码过程可以包含多个隐藏层,每个隐藏层的输出都是原始数据的一种抽象表示。

        自编码器的目标是通过训练,使得重构结果与初始输入数据尽可能相似。然而,自编码器并不简单地复制输入数据,这样的输出是无意义的。在训练过程中,需要添加一系列约束,使得模型只能对输入数据进行近似复制,这样模型会更加关注重要的特征。通过这种方式,自编码器可以学习到输入数据的低维表示,实现了将高维空间的数据压缩到低维特征空间的目的。

毕业设计:基于机器学习的网络漏洞攻击检测系统

        卷积自编码器(CAE)是一种利用卷积神经网络结合自编码器的特点和优势的神经网络结构。CAE通过卷积和池化操作实现编码和解码过程,用于特征提取和数据压缩。它能够有效地提取数据中的最优特征,并通过逐层学习和转换将高维数据映射到低维表示。CAE弥补了自编码器和卷积神经网络各自的不足,降低了对权重敏感度和标记数据的依赖性,同时解决了自编码器中全连接结构导致的参数过多问题。它在深度学习中被广泛应用于特征提取、数据降维和重构等任务。

2.2 特征提取方法

        非对称的深度卷积自编码器旨在挖掘和提取网络流量数据的特征,并降低高维数据的维度。与传统自编码器不同,ADCAE只保留编码器部分并构建一个非对称的堆叠多层编码的深度网络模型进行数据训练。最后,将该模型的输出作为支持向量机(SVM)的输入,用于入侵检测。

        在分层抽样方法生成的训练样本集和测试样本集中,为了作为特征提取模型的输入,需要进行预处理。这包括数值化、标准化和归一化等步骤。数值化将字符型属性转换为数值型,使用one-hot编码实现属性映射。然后,通过z-score标准化处理数据集,解决不同维度间的可比性问题,并使用离差标准化进行归一化处理。得到规范化的数据集后,将原始的41个特征属性扩充到64个特征,并将其转换为2维数据,以作为特征提取模型的输入。

        深度自编码器(DAE)是一个多层的深度神经网络,相较于浅层自编码器(AE),它包含多个编码器和解码器,能够学习更高级的特征表示,并产生更少的重构误差。然而,DAE的复杂性增加了许多训练参数,同时在特征学习过程中,输出的特征数目较原始特征数目会减少,因此模型会优先选择最重要的特征作为输出。这使得DAE能够自动学习每一层的最佳特征,特别是在编码阶段。

毕业设计:基于机器学习的网络漏洞攻击检测系统

        非对称深度卷积自编码器(ADCAE)与浅层分类SVM算法相结合,用于识别和分类漏洞利用攻击流量,以提高分类检测的准确率。ADCAE模型通过提取不同攻击样本的潜在特征来训练SVM分类器,实现对攻击样本的分类。该模型是一个无监督的多层深度神经网络,并包含数据预处理阶段、自动编码器特征学习阶段和异常攻击分类识别阶段三个核心阶段。

        整体流程如下:首先对数据样本进行预处理,合并系数特征,并进行数值化、标准化和归一化处理。接下来,使用ADCAE方法对数据进行特征提取,将预处理后的高维流量数据作为ADCAE模型的输入,通过编码器网络层得到降维后的流量特征数据。最后,在自编码器网络的输出层之后连接SVM分类器,对数据样本进行分类识别并得到分类结果。

相关代码示例:

# 数据预处理
preprocessed_data = preprocess_data(data)
merged_features = merge_coefficient_features(preprocessed_data)
normalized_data = normalize_data(merged_features)

# ADCAE特征提取
extracted_features = adcae_feature_extraction(normalized_data)

# SVM分类器训练和预测
svm_model = train_svm_classifier(extracted_features, labels)
predictions = svm_model.predict(extracted_features)

# 输出分类结果
print(predictions)

三、检测的实现

3.1 数据集

        由于网络上没有现有的合适的数据集,我们决定自己进行网络爬取来收集数据。我们使用爬虫技术在多个来源的网络流量中收集了大量样本数据,包括各种类型的恶意流量样本。通过这种方式,我们能够获得真实且多样的网络流量数据,这将为我们的研究提供更准确、可靠的数据。

3.2 实验环境搭建

        实验在一台硬件环境为英特尔 i5-4200M处理器、8GB内存和Windows 10专业版操作系统的计算机上完成了恶意流量识别模型的实现。我们使用了Python中基于TensorFlow的Keras框架来实现所提出的模型。

3.3 实验及结果分析

        恶意流量识别系统采用了两种方法对采集到的流量进行特征提取,并利用提取后的特征属性子集训练 SVM 分类器,完成对不同漏洞利用攻击流量的识别。系统的操作流程包括采集网络流量、选择特征提取方法、设定实验参数、数据预处理、准备执行算法、入侵检测和分析结果等步骤。执行流程如下:

  • 通过部署的Honeybrid蜜罐系统采集漏洞利用攻击流量,并将数据保存在本地。然后,选择特征提取方法,这里比较了主成分分析(PCA)、核主成分分析(KPCA)和卷积自编码器(CAE)等三种算法,并结合本文提出的两种方法,共计五种特征提取算法。
  • 根据选定的特征提取方法设置实验参数,通过观察算法执行结果来更新参数值。然后进行数据预处理,根据选择的特征提取方法对捕获到的网络流量数据集进行预处理。
  • 在准备执行算法阶段,预处理的数据集将作为输入,生成相应的特征属性子集,并将结果保存在本地。然后,利用SVM分类器对生成的特征进行入侵检测,对捕获的攻击数据进行分类识别。
  • 分析实验结果,计算分类精确度、召回率和F1-score等指标的值,并对这些数据进行整理和保存,同时计算各项指标的均值。精确度衡量了模型正确分类的能力,召回率评估了模型检测到某一类样本的能力,而F1-score综合了这两个指标,提供了一个综合的性能度量。

相关代码示例:

# 采集流量数据
flow_data = collect_flow_data()

# 选择特征提取方法
feature_extraction_method = select_feature_extraction_method()

# 设定实验参数
experiment_parameters = set_experiment_parameters()

# 数据预处理
preprocessed_data = preprocess_data(flow_data)

# 执行特征提取算法
features = feature_extraction_method(preprocessed_data)

# 准备执行算法
feature_subset = prepare_feature_subset(features)

# 训练SVM分类器
svm_classifier = train_svm_classifier(feature_subset)

# 进行入侵检测
intrusion_results = svm_classifier.predict(feature_subset)

# 分析结果
accuracy = calculate_accuracy(intrusion_results)
recall = calculate_recall(intrusion_results)
f1_score = calculate_f1_score(intrusion_results)

# 输出结果
print("Accuracy:", accuracy)
print("Recall:", recall)
print("F1-score:", f1_score)

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值