
深度学习毕业设计
文章平均质量分 94
Krin_IT
项目开题指导,毕设帮助,问题解答,欢迎打扰!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
毕业设计:基于卷积神经网络的校园行人和车辆实时跟踪方法
校园内行人和车辆多目标跟踪方法。首先,通过部署摄像头收集校园内的行人和车辆视频数据,并对数据进行标注和整理。接着,采用卷积神经网络(CNN)进行目标检测,利用YOLO或SSD等算法实现行人和车辆的实时检测。对于计算机专业、人工智能专业、交通工程专业及安全工程专业的同学而言,不论是对图像处理、深度学习还是智能交通系统感兴趣,都能为您提供丰富的选题资源和灵感。原创 2025-04-17 17:00:00 · 1734 阅读 · 0 评论 -
毕业设计:基于深度学习的运动姿态识别与计数系统 人工智能
健身动作识别与计数系统收集多种健身动作的视频数据,并进行数据标注,区分不同类型的动作。接着,利用卷积神经网络(CNN)对视频帧进行特征提取,并结合循环神经网络(RNN)进行时间序列分析,实现对动作的准确识别与计数。对于计算机视觉、人工智能、体育科学及相关专业的同学而言,不论是对动作识别、智能健身设备还是机器学习感兴趣,都能为您提供丰富的选题资源和灵感。原创 2025-04-15 17:00:00 · 1901 阅读 · 0 评论 -
毕业设计:基于深度学习的舌诊图像分割技术 人工智能
舌诊图像分割方法,以提高舌诊图像的处理精度。首先,构建一个包含多种舌象的图像数据集,并进行数据增强,以提升模型的泛化能力。然后,采用卷积神经网络(CNN)进行舌体和舌苔的特征提取,并结合U-Net网络架构,实现对舌诊图像的精准分割。对于医学图像处理、计算机视觉及相关专业的同学而言,不论是对深度学习、图像分割还是中医学感兴趣,都能为您提供丰富的选题资源和灵感。原创 2025-04-10 23:10:00 · 993 阅读 · 0 评论 -
毕业设计:基于深度学习的人脸活体识别与陌生人闯入检测系统 人工智能
结合人脸活体识别与陌生人闯入检测的综合安全系统利用深度学习技术(如卷积神经网络)对人脸图像进行特征提取,实现高精度的人脸识别。为有效防止欺骗攻击,引入活体检测技术,通过分析面部动态特征(如眨眼、微笑等)来识别真实人脸。在活体识别和陌生人检测任务中均表现出较高的准确率和实时性,为企业提供了安全有效的解决方案。本研究为提升企业安全管理水平,保护员工及公司资产安全提供了重要的技术支持。原创 2025-04-10 18:01:37 · 892 阅读 · 0 评论 -
毕业设计:基于图像处理的树叶病虫害自动监测与识别
基于图像处理的树叶病虫害自动监测与识别利用自制数据集和深度学习技术,实现对多种树叶病虫害的识别与检测。采用卷积神经网络(CNN)模型进行训练与优化,提升了分类的准确性。实验结果表明,系统在多种病虫害的识别中表现优异,为农业生产提供了有效的技术支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-04-09 19:07:10 · 1198 阅读 · 0 评论 -
毕业设计:基于卷积神经网络的行李安检危险品识别系统
安检行李危险品自动识别系统。首先,收集和整理包含多种危险品(如爆炸物、易燃物、腐蚀性物质等)的行李图像数据集,并对数据进行标注。接着,采用卷积神经网络(CNN)构建危险品识别模型,利用迁移学习方法优化模型性能。对于计算机科学、人工智能、公共安全管理等专业的同学而言,不论是对图像识别、机器学习还是安检技术感兴趣,都能为您提供丰富的选题资源和灵感。原创 2025-04-09 18:28:09 · 889 阅读 · 0 评论 -
毕业设计:基于卷积神经网络的实验室人脸识别系统 深度学习
实验室人脸识别系统,结合卷积神经网络和YOLOv5模型,以实现实时的人脸检测与识别。首先,通过自主拍摄和互联网采集的方式构建多样化的人脸数据集,并使用标注工具进行精确的数据标注。接着,设计并实现了基于卷积神经网络的特征提取模块和YOLOv5目标检测模块,确保系统对不同人脸特征的准确捕捉与实时响应。对于计算机科学、人工智能、信息安全等专业的同学而言,不论是对人脸识别、智能系统还是安全管理感兴趣,都能为您提供丰富的选题资源和灵感。原创 2025-04-08 22:55:20 · 996 阅读 · 0 评论 -
毕业设计:基于深度学习的中药材切片自动识别研究
中药材切片自动识别方法。通过收集和整理中药材的显微切片图像数据,构建了一个包含多种中药材的图像数据集。采用卷积神经网络(CNN)进行特征提取与分类,通过迁移学习和数据增强等技术提高模型的识别性能。对于计算机专业、人工智能专业、中医学专业及药学专业的毕业生而言,不论是对图像处理、深度学习还是中药材研究感兴趣的同学,都能为您提供丰富的选题资源和灵感。原创 2025-04-07 22:38:57 · 681 阅读 · 0 评论 -
毕业设计:基于深度学习的鲜花与绿植种类自动识别 Python
鲜花与绿植种类识别方法。通过构建包含多种植物的图像数据集,利用卷积神经网络(CNN)进行特征提取与分类。在植物种类识别准确率上具有显著优势,能够有效识别多种鲜花和绿植。对于计算机专业、人工智能专业、园艺学专业及生态学专业的毕业生而言,不论是对图像处理、深度学习还是植物研究感兴趣的同学,都能为您提供丰富的选题资源和灵感。原创 2025-04-03 21:19:06 · 1085 阅读 · 0 评论 -
毕业设计:结合图像处理与深度学习的焊缝缺陷检测系统
基于机器视觉的焊缝图像缺陷检测识别方法。首先,利用图像处理技术对焊缝图像进行预处理,包括去噪声、增强对比度和边缘检测等操作,以提高图像质量。接着,构建卷积神经网络(CNN)模型,通过对处理后的图像进行特征提取和分类,识别焊缝中的缺陷类型(如裂纹、气孔等)。对于计算机专业、人工智能专业、图像处理专业的毕业生而言,无论是对机器视觉、深度学习还是工业检测感兴趣的同学,都能为您提供丰富的选题资源和灵感。原创 2025-04-01 22:15:09 · 955 阅读 · 0 评论 -
毕业设计:基于计算机视觉的行人交通违规行为检测系统 人工智能
基于计算机视觉和深度学习的行人交通违规行为识别系统。首先,构建一个包含多种交通场景和行人行为的视频数据集,涵盖正常行人与违规行为(如闯红灯、随意穿行)的样本。然后,采用卷积神经网络(CNN)等深度学习算法对视频数据进行训练,以实现对行人交通违规行为的自动检测和分类。系统还结合实时视频监控技术,能够在复杂的城市交通环境中进行准确检测。此外,本研究还通过数据分析,识别出行人违规行为的主要影响因素,为后续的交通安全教育和管理策略提供依据。原创 2025-04-01 21:36:19 · 743 阅读 · 0 评论 -
毕业设计:基于计算机视觉的汽车车牌号码识别系统
汽车车牌号码识别系统利用OpenCV对输入图像进行预处理,包括灰度化、二值化和边缘检测。接着,采用轮廓提取的方法定位车牌区域,并通过字符分割技术提取出车牌上的字符。最后,运用机器学习算法(如支持向量机或深度学习模型)对提取的字符进行识别。对于计算机专业、人工智能专业、图像处理专业的毕业生而言,无论是对计算机视觉、图像处理还是模式识别感兴趣的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-31 21:12:53 · 790 阅读 · 0 评论 -
毕业设计:基于机器视觉的施工现场安全防护装备智能监测
基于机器视觉的施工人员安全防护检测方法,专注于检查工人在施工过程中是否佩戴安全帽和穿着反光衣。通过构建自制数据集,获取施工现场的图像数据,应用卷积神经网络(CNN)对安全装备进行自动识别与检测。对计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-28 20:58:10 · 811 阅读 · 0 评论 -
毕业设计:基于机器视觉的户外场地可回收垃圾分类系统 人工智能
垃圾分类系统构建一个包含多种类别垃圾图像的数据集,涵盖可回收物、有害垃圾、湿垃圾和干垃圾等类别。然后,采用卷积神经网络等深度学习算法对垃圾图像进行分类训练,以实现高精度的垃圾识别。针对模型的训练和测试,采用数据增强技术提高模型的泛化能力。系统还集成了用户友好的界面,方便用户通过手机应用进行垃圾分类指导。此外,研究还涉及社区垃圾分类的推广策略,分析影响公众参与垃圾分类的因素,并提出相应的改善建议。原创 2025-03-28 17:30:39 · 875 阅读 · 0 评论 -
毕业设计:基于机器视觉的水果病害检测与分类系统 深度学习
水果病害检测与分割系统,利用深度学习技术实现对水果病害的自动识别与处理。采用卷积神经网络(CNN)进行特征提取和分类,并结合图像分割算法(如U-Net)对病害区域进行精确分割。通过建立自制数据集,系统能够有效识别多种水果的病害,实验结果表明,该系统在检测准确性和分割效果上具有显著优势,为水果生产提供了科学的技术支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于计算机视觉技术感兴趣的同学,还是希望探索深度学习和图像处理领域的同学,都能为您提供丰富的选题资源和灵感原创 2025-03-27 19:36:59 · 733 阅读 · 0 评论 -
毕业设计:基于机器学习的车站客流量实时分析与预警系统
基于计算机视觉的车站客流量实时检测系统。首先,系统通过高清摄像头对车站内的客流情况进行视频监控,利用图像处理和深度学习算法对图像进行分析,自动识别和计数进出车站的乘客。为智能交通系统的发展提供了新的技术方案,有助于提升公共交通的管理水平与服务质量。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业、的毕业生而言,不论是对于对深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-25 22:25:52 · 637 阅读 · 0 评论 -
毕业设计:基于计算机视觉的骑行头盔佩戴识别系统 深度学习
基于计算机视觉的骑行头盔佩戴识别系统。首先,收集了大量骑行者在不同环境下佩戴和未佩戴头盔的图像数据,并进行了标注,构建了骑行头盔佩戴数据集。其次,采用深度学习中的卷积神经网络(CNN)对图像进行特征提取与分类,训练出一个高效的头盔佩戴识别模型。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业、的毕业生而言,不论是对于对深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-25 21:53:17 · 1207 阅读 · 0 评论 -
毕业设计:结合卷积神经网络与图像处理的道路遥感提取系统
道路遥感提取方法,旨在提高遥感影像中道路信息的提取精度。通过构建卷积神经网络模型,系统能够自动识别和提取遥感影像中的道路区域。实验采用高分辨率遥感影像进行验证,结果表明该方法在提取精度和效率上均优于传统方法。对于计算机专业、人工智能专业、大数据专业、地理信息科学专业、软件工程专业的毕业生而言,不论是对于遥感技术感兴趣的同学,还是希望探索计算机视觉和深度学习领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-22 23:33:16 · 1342 阅读 · 0 评论 -
毕业设计:基于网络安全的的恶意网络流量监测 信息安全
恶意流量检测模型,旨在通过构建卷积神经网络(CNN)和深度神经网络(DNN)作为本地模型,利用联邦学习框架实现高效的恶意流量识别。该流程包括数据准备、模型设计、模型训练、模型评估与测试以及模型部署等关键步骤。通过对收集的网络流量数据进行预处理和标注,构建了适合的深度学习模型,并采用混淆矩阵及其他评估指标对模型对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-19 20:26:08 · 818 阅读 · 0 评论 -
毕业设计:基于深度学习的嫌疑人指纹比对与识别技术
基于深度学习的嫌疑人指纹比对与识别系统,采用卷积神经网络(CNN)进行指纹图像的特征提取与匹配。系统首先对指纹图像进行预处理,包括去噪、增强和归一化等步骤,以提高后续识别的准确性。通过构建并训练深度学习模型,系统能够实现高效的指纹比对,实验结果表明,该系统在识别率和响应速度上均表现优异。对于计算机专业、人工智能专业、数据科学专业、信息安全专业、软件工程专业的毕业生而言,不论是对生物识别技术感兴趣的同学,还是希望探索机器学习和图像处理领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-19 17:37:56 · 1047 阅读 · 0 评论 -
毕业设计:基于卷积神经网络的的行人车辆实时检测系统
基于深度学习模型提出了一种新的行人和车辆识别方法,采用YOLOv5或SSD等高效的目标检测算法。通过构建自制的行人和车辆数据集进行训练,我们实现了对复杂交通场景的实时识别。实验结果表明,该方法在行人和车辆的识别精度及响应速度上均表现优异,能够适应多种光照和环境条件。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,无论是对深度学习技术或计算机视觉感兴趣的同学,都能为您提供丰富的选题资源和灵感原创 2025-03-15 20:57:00 · 1006 阅读 · 0 评论 -
毕业设计:基于机器学习的闯红灯违章检测方法研究 人工智能
基于YOLOv5和OpenCV,提出了一种新的行人闯红灯检测方法。系统首先利用YOLOv5模型对实时视频流进行行人检测和行为识别,判断行人是否在红灯状态下通过马路。通过OpenCV进行图像处理和数据可视化,系统能够实时反馈检测结果,并为交通管理部门提供有效的决策支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,无论是对深度学习技术或计算机视觉感兴趣的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-15 19:25:55 · 828 阅读 · 0 评论 -
毕业设计:基于神经网络的病理细胞图像分割技术 U-net
病理图像细胞分割方法,采用UNet模型进行细胞特征的自动提取与分割。我们自制了一组包含多种细胞类型的病理图像数据集,并对其进行标注,以便于模型训练和评估。通过对UNet模型的训练和优化,实验结果显示,该方法在细胞分割任务中表现出较高的准确性和鲁棒性,能够有效提升病理图像分析的自动化水平。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,无论是对深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-15 18:50:08 · 1471 阅读 · 0 评论 -
毕业设计:基于深度学习的雾霾图像去雾技术研究 人工智能
图像去雾算法,旨在利用深度学习技术改善雾霾天气下图像的清晰度。我们自制了一套包含不同雾霾条件的图像数据集,并进行了详细的标注,以支持模型的训练和评估。通过对深度学习模型的训练与优化,实验结果表明该算法在去雾效果和细节恢复方面均表现优异,显著优于传统去雾方法对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,无论是对深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-15 20:00:00 · 829 阅读 · 0 评论 -
毕业设计:基于神经网络的图像隐写技术研究
图像隐写检测技术,旨在通过自制的隐写图像数据集,利用深度学习方法实现对隐写内容的自动检测与识别。为图像隐写检测提供了一种高效的技术方案,为网络安全保驾护航。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-03-10 23:31:28 · 1074 阅读 · 0 评论 -
毕业设计:基于机器学习的行人车辆识别与检测
行人车辆检测系统通过自制行人车辆数据集,结合YOLO算法理论技术,达到了准确识别行人和车辆的效果。构建了一个高质量的行人车辆数据集,涵盖了多种场景和复杂背景,确保了样本的多样性和代表性。采用YOLO算法对数据集进行训练和测试,优化了检测模型的性能。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-02-26 23:51:38 · 927 阅读 · 0 评论 -
【毕业设计】基于机器视觉的草莓病害检测与分类系统
草莓病害检测系统通过自制草莓病害数据集,结合卷积神经网络理论技术,达到了准确识别草莓病害的效果。本文首先构建了一个涵盖多种草莓病害类型的高质量数据集,确保样本的多样性和代表性。随后,采用卷积神经网络对数据集进行训练和测试,优化了病害检测模型的性能。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-02-26 23:13:41 · 902 阅读 · 0 评论 -
【毕业设计】基于深度学习的矿井煤仓传送带异物检测
基于深度学习的矿井煤仓传送带异物检测系统。通过自制数据集,采用卷积神经网络(CNN)等深度学习技术,实现对传送带上异物的高效识别与检测。研究过程包括数据采集、模型训练以及性能评估,最终构建出一个能够实时监测和自动识别异物的系统。该系统的实施将显著提高煤矿作业的安全性和效率,减少因异物造成的损失。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-02-22 21:10:29 · 1011 阅读 · 0 评论 -
毕业设计:基于深度学习的交通标志自动检测与识别
基于深度学习的交通标志检测系统。通过自制数据集,采用卷积神经网络(CNN)等深度学习技术,实现对各类交通标志的高效检测与识别。研究过程包括数据采集、模型训练、实时检测与性能评估,最终构建出一个能够在复杂路况下准确识别交通标志的智能系统。该系统的实施将显著提高交通安全和管理效率,为智能交通的发展提供技术支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-02-23 18:00:00 · 1290 阅读 · 0 评论 -
毕业设计:基于卷积神经网络的校园垃圾分类自动识别 Python
基于深度学习的垃圾分类识别系统。通过自制数据集,采用卷积神经网络(CNN)等深度学习技术,实现对不同类别垃圾的高效识别与分类。研究过程包括数据采集、模型训练、分类算法优化及性能评估,最终构建出一个能够在实际环境中实时识别垃圾类型的智能系统。该系统的实施将显著提升垃圾分类的准确性和效率,为环境保护和资源回收提供有力支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资原创 2025-02-23 17:00:00 · 765 阅读 · 0 评论 -
毕业设计:基于卷积神经网络的西红柿番茄图像识别系统 深度学习
基于深度学习的西红柿番茄识别系统。通过自制数据集,采用卷积神经网络(CNN)等深度学习技术,实现对西红柿番茄的高效识别与分类。研究过程包括数据采集、模型训练、特征提取及性能评估,最终构建出一个能够在实际种植环境中准确识别西红柿番茄的智能系统。该系统的实施将显著提高农业生产效率,帮助农民更好地管理作物,为农业的可持续发展提供有力支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,无论是对深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供原创 2025-02-22 20:03:36 · 876 阅读 · 0 评论 -
毕业设计:基于计算机视觉的烟雾与火苗自动检测系统 人工智能
基于深度学习的烟雾火苗检测系统。通过自制数据集,采用卷积神经网络(CNN)等深度学习技术,实现对烟雾和火焰的高效识别与检测。研究过程包括数据采集、模型训练、实时监测与性能评估,最终构建出一个能够在复杂环境中准确检测烟雾和火焰的智能系统。该系统的实施将显著提高火灾预警的准确性和及时性,为公共安全和消防管理提供有力支持。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,无论是对深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和原创 2025-02-22 19:29:07 · 795 阅读 · 0 评论 -
【毕业设计】基于图像识别的农用机械作业目标检测 深度学习
基于深度学习的农业机械故障诊断系统。通过自制数据集,运用卷积神经网络(CNN)等深度学习技术,实现对农业机械故障的高效识别与诊断。研究过程涵盖数据采集、模型训练、故障特征提取及性能评估,最终构建出一个能够实时监测和智能诊断农业机械状态的系统。该系统的实施将有效提高农业机械的作业效率和可靠性,减少故障停机时间。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-02-21 23:57:28 · 662 阅读 · 0 评论 -
毕业设计:基于机器视觉的公共场所口罩佩戴检测系统 人工智能
基于深度学习的口罩佩戴检测系统。通过自制数据集,采用卷积神经网络(CNN)等深度学习技术,实现对口罩佩戴状态的高效识别与检测。研究过程涵盖数据采集、模型训练、实时监测及性能评估,最终构建出一个能够在公共场所实时监测口罩佩戴情况的智能系统。该系统的实施将显著提升公共卫生安全,助力疫情防控工作。对于计算机专业、人工智能专业、大数据专业、信息安全专业、软件工程专业的毕业生而言,不论是对于深度学习技术感兴趣的同学,还是希望探索机器学习、算法或人工智能的领域的同学,都能为您提供丰富的选题资源和灵感。原创 2025-02-21 17:00:00 · 825 阅读 · 0 评论 -
基于机器学习的流浪动物(猫、狗)检测与分类系统研究
基于机器学习的流浪动物(猫、狗)检测与分类系统,旨在利用先进的计算技术,为流浪动物的识别和保护提供有效解决方案。该系统通过收集多样化的图像数据集,采用图像处理和机器学习算法,能够准确地检测并分类流浪猫和流浪狗。使用支持向量机(SVM)和K最近邻(KNN)等传统机器学习分类器,结合卷积神经网络(CNN)进行迁移学习,提升了模型的准确性和鲁棒性。原创 2025-02-16 19:31:51 · 872 阅读 · 0 评论 -
毕业设计:融合注意力机制的水果可食用状态(新鲜、腐烂)检测
毕业设计:在现代食品安全监测中,水果可食用状态检测模型的训练过程至关重要。本文详细介绍了基于YOLOv5架构的水果可食用状态(新鲜、腐烂)检测模型的训练流程,包括数据准备、模型选择与优化、引入SE注意力机制、损失函数改进、模型训练、性能评估以及结果分析。通过合理的数据划分与标注、优化的网络结构和改进的损失函数,该模型能够高效准确地识别水果的可食用状态。此外,采用的性能评价指标如精确度、召回率及平均精度均值(mAP)等,全面反映了模型的检测能力与速度。原创 2025-02-14 23:20:35 · 811 阅读 · 0 评论 -
【毕业设计】基于卷积神经网络的可食用水果分类检测系统 人工智能
基于卷积神经网络(CNN)和YOLOv8算法的水果分类检测系统,以实现对可食用水果的快速、准确识别。通过自主拍摄和互联网采集的方式建立了多样化的水果图像数据集,利用专业的标注工具对数据进行精确标注。随后,设计并实现了包含卷积层、池化层和全连接层的CNN模型,充分利用其特征提取能力和层次化特征表示。涵盖了深度学习、机器学习、算法、人工智能、大数据、信息安全、推荐系统、目标检测等多个热门领域。对于计算机专业、软件工程专业、人工智能专业、大数据专业的毕业生而言,毕业设计选题至关重要。原创 2025-02-13 23:32:23 · 1018 阅读 · 0 评论 -
【毕业设计】基于卷积神经网络的摩托车检测与识别
毕业设计:基于卷积神经网络的摩托车检测与识别采用YOLO系列算法通过数据集的构建与标注,确保了模型训练的丰富性和可靠性。经过多轮迭代训练与参数调优,最终实现了高准确率和强鲁棒性的摩托车检测功能。涵盖了深度学习、机器学习、算法、人工智能、大数据、信息安全、推荐系统、目标检测等多个热门领域。对于计算机专业、软件工程专业、人工智能专业、大数据专业的毕业生而言,毕业设计选题至关重要。对深度学习技术、机器学习、算法或人工智能等领域感兴趣的同学,都能提供选题资源和灵感。原创 2025-02-12 23:43:55 · 854 阅读 · 0 评论 -
毕业设计:基于机器学习的血细胞图像识别算法研究
血细胞图像识别的技术,通过深度学习和计算机视觉方法,构建一个高效的自动化血细胞分类系统。首先,收集和预处理血细胞图像数据集,采用数据增强技术提高模型的泛化能力。接着,使用卷积神经网络(CNN)设计并训练模型,以实现对红细胞、白细胞及血小板的准确分类。通过与传统方法的比较,验证所提出系统在准确性、效率和稳定性方面的优势。原创 2025-02-11 23:56:53 · 773 阅读 · 0 评论 -
毕业设计:基于机器视觉的细胞图像自动分割系统 人工智能
毕业设计:基于计算机视觉的病理细胞图像分割算法,探讨如何利用深度学习技术实现对病理切片图像中细胞的自动分割。首先,论文介绍了病理细胞图像的特点及其在医学诊断中的重要性,分析了现有图像分割方法的优缺点。接着,基于卷积神经网络(CNN),我们设计了一种新型的细胞图像分割模型,结合了U-Net架构和数据增强技术,以提高分割的准确性和鲁棒性。通过构建和标注一系列病理细胞图像数据集,我们对模型进行了训练与验证。实验结果显示,该模型在细胞分割任务上达到了较高的精度和召回率,优于传统分割方法。原创 2025-01-03 21:22:56 · 1167 阅读 · 0 评论